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Mound formation and coarsening from a nonlinear instability in surface growth
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We study spatially discretized versions of a class of one-dimensional, nonequilibrium, conserved growth
equations for both nonconserved and conserved noise using numerical integration. An atomistic version of
these growth equations is also studied using stochastic simulation. The models with nonconserved noise are
found to exhibit mound formation and power-law coarsening with slope selection for a range of values of the
model parameters. Unlike previously proposed models of mound formation, the Ehrlich-Schwoebel step-edge
barrier, usually modeled as a linear instability in growth equations, is absent in our models. Mound formation
in our models occurs due to a nonlinear instability in which the heidapth of spontaneously generated
pillars (grooves increases rapidly if the initial heighdepth is sufficiently large. When this instability is
controlled by the introduction of a nonlinear control function, the system exhibits a first-order dynamical phase
transition from a rough self-affine phase to a mounded one as the value of the parameter that measures the
effectiveness of control is decreased. We define an “order parameter” that may be used to distinguish between
these two phases. In the mounded phase, the system exhibits power-law coarsening of the mounds in which a
selected slope is retained at all times. The coarsening exponents for the spatially discretized continuum equa-
tion and the atomistic model are found to be different. An explanation of this difference is proposed and
verified by simulations. In the spatially discretized growth equation with conserved noise, we find the curious
result that the kinetically rough and mounded phases are both locally stable in a region of parameter space. In
this region, the initial configuration of the system determines its steady-state behavior.
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[. INTRODUCTION shorter tharR(t). Nevertheless, there are certain similarities
between the gross features of these two kinds of surface
The process of growing films by the deposition of atomsgrowth. First consider the simpler situation in which the
on a substrate is of considerable experimental and theoreticalope of the sides of the mounds remains constant in time.
interest[1]. While there has been a lot of research on theSimple geometry tells us that if the system evolves to a
process of kinetic roughenind —3] leading to a self-affine  single-mound structure at long times, then the “roughness
interface profile, there has been much recent experiment&xponent” @ must be equal to unity. Also, the height-
[4-12 and theoretical4,6,13—25 interest in a different difference correlation functiog(r) is expected to be propor-
mode of surface growth involving the formation of tional tor for r<R(t). This is consistent withv=1. If the
“mounds” which are pyramidlike or “wedding-cake-like” mound sizeR(t) increases with time as a power laR(t)
structures. The precise experimental conditions that deter=t", during coarsening, then the interface witlthwhich is
mine whether the growth morphology would be kinetically essentially the height of a typical mound, should also in-
rough or dominated by mounds are presently unclear. Howerease with time as a power law with the same exponent
ever, many experiments show the formation of mounds thathus, dynamic scaling with “growth exponeng equal ton
coarsen(the typical lateral size of the mounds increases and “dynamical exponentz equal to 1 is recovered. If the
with time. During this process, the typical slope of the sidesmound slopes(t) increases with time as a power lag(t)
of the pyramidlike mounds may or may not remain constant~t? (this is known in the literature asteepening then one
If the slope remains constant in time, the system is said t@btains behavior similar to anomalous dynamical scaling
exhibit slope selectionAs the mounds coarsen, the surface[26] with B=n+ 6, z=1/n.
roughness characterized by the root-mean-square width of These similarities between the gross scaling properties of
the interface increases. Eventually, at very long times, th&inetic roughening with a large value of and mound for-
system is expected to evolve to a single-mound structure imation with power-law coarsening make it difficult to ex-
which the mound size is equal to the system size. perimentally distinguish between these two modes of surface
There are obvious differences between the structures ajrowth. This poses a problem in the interpretation of experi-
kinetically rough and mounded interfaces. In the first casemental result§11,12. Existing experiments on mound for-
the interface is rough in a self-affine way at length scalesnation show a wide variety of behavior. Without going into
shorter than a characteristic lengéft) that initially in-  the details of individual experiments, we note that some ex-
creases with time and eventually saturates at a value compperiments show mound coarsening with a time-independent
rable to the sample size. In the second case, the characteristimagic” slope, whereas other experiments do not show any
length is the typical mound sizR(t) whose time depen- slope selection. The detailed morphology of the mounds var-
dence is qualitatively similar to that @f(t). However, the ies substantially from one experiment to another. The re-
interface in this case looks well ordered at length scaleported values of the coarsening exponenshow a large
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variation in the range 0.15-0.4. tions and in related discrete atomistic models from a
Traditionally, the formation of mounds has been attributedmechanism that is radically different from the ones men-
to the presence of the so-called Ehrlich-Schwo¢€B§&) step-  tioned above. Our study is based on the conserved nonlinear

edge barrief27,2g that hinders the downward motion of growth equation proposed by Villa[i29] and by Lai and Das
atoms across the edge of a step. This step-edge diffusion bi&rma[30], and an atomistic versiof81] of this equation.
makes it more likely for an atom diffusing on a terrace toWe have studied the behavior of spatially discretized ver-
attach to an ascending step than to a descending one. Thifons of the continuum equation by numerical integration,
leads to an effective “uphill” surface curref29] that has a and the behavior of the atomistic model by stochastic simu-
destabilizing effect, leading to the formation of moundediation. Previous work32—34 on these systems showed that
structures as the atoms on upper terraces are prevented by ey exhibit anonlinearinstability, in which pillars(grooves
ES barrier from coming down. with height (depth greater than a critical value continue to
This destabilizing effect is usually represented in con-grow rapidly. This instability can be controll@2—34 by
tinuum growth equations by laear instability. Such growth  the introduction of an infinite number of higher-order gradi-
equations usually have a “conserved” form in which the ent nonlinearities. When the parameter that describes the ef-
time derivative of the height is assumed to be equal to théectiveness of control is sufficiently large, the controlled
negative of the divergence of a nonequilibrium surface curmodels exhibi{32—34 kinetic roughening, characterized by
rentj. The effects of an ES barrier are modeled in thesausual dynamical scaling with exponent values close to those
equations by a term ipthat is proportional to the gradient of expected from dynamical renormalization group calculations
the height(for small values of the gradienwith a positive  [30,35,3. As the value of the control parameter is de-
proportionality constant. Such a term is manifestly unstablecreased, these models exhibit transient multiscdl8®y-34
leading to unlimited exponential growth of the=0 Fourier  of height fluctuations. For yet smaller values of the control
components of the height. This instability has to be conparameter, the rapid growth of pillars or grooves causes a
trolled by other nonlinear terms in the growth equation inbreakdown of dynamical scaling, with the width versus time
order to obtain a proper description of the long-time behavplot showing a sharp upward deviatifd3] from the power-
ior. A number of different choices for the nonlinear termslaw behavior found at short timgdefore the onset of the
have been reported in the literatyr6,13,14,22,2B If the  nonlinear instability.
“ES part” of j has one or more stable zeros as a function of We report here the results of a detailed study of the be-
the slopes, then the slope of the mounds that form as a resulhavior of these models in the regime of small values of the
of the ES instability is expected to stabilize at the corre-control parameter where conventional kinetic roughening is
sponding valués) of s at long times. The system would then not observed. We find that in this regime, the interface self-
exhibit slope selection. If, on the other hand, this parf of organizes into a sawtoothlike structure with a series of trian-
does not have a stable zero, then the mounds are expectedgolar, pyramidlike mounds. These mounds coarsen in time,
continue to steepen with time. Analytic and numerical stud-with larger mounds growing at the expense of smaller ones.
ies of such continuum growth equations have produced & this coarsening regime, a power-law dependence of the
wide variety of results, such as power-law coarsening anéhterface width on time is recovered. The slope of the
slope selection witm=1/4 [13] or n=0.17[6] in two di-  mounds remains constant during the coarsening process. In
mensions, power-law coarsening accompanied by a steepe8ec. Il, the growth equation and the atomistic model studied
ing of the mound$4,14,14, and a complex coarsening pro- in this work are defined and the numerical methods we have
cesy 22,23 in which the growth of the mound size becomesused to analyze their behavior are described. The basic phe-
extremely slow after a characteristic size is reached. nomenology of mound formation and slope selection in these
There are several atomistic, cellular-automaton-type modsystems is described in detail in Sec. Ill. Specifically, we
els [19-21 that incorporate the effects of an ES diffusion show that the nonlinear mechanism of mound formation in
barrier. Formation and coarsening of mounds in the presendbese systems is “generic” in the sense that the qualitative
of an ES barrier have also been stud[@2,23 in a one- behavior does not depend on the specific form of the func-
dimensionallD) model with both discrete and continuum tion used for controlling the instability. In particular, we find
features. We also note that a new mechanism for moundingery similar behavior for two different forms of the control
instability has been discovered recently7,18. This insta- function: one used in earlier studi¢d32—34 of these sys-
bility, generated by fast diffusion along the edges of mon-tems, and the other one proposed by Politi and Vil[&8]
atomic steps, leads to the formation of quasiregular shapefilom physical considerations. Since the linear instability
mounds in two or higher dimensions. The effects of this in-used conventionally to model the ES mechanism is explicitly
stability have been studied in simulatiofs7,18,20,24,26  absent in our models, our work shows that the presence of
The wide variety of result§17—25 obtained from simula- step-edge barriers is not essential for mound formation. The
tions of different models, combined with similar variations in slope selection found in our models is a true example of
the experimental results, have made it very difficult to iden-nonlinear pattern formation: since the nonequilibrium sur-
tify the microscopic mechanism of mound formation in sur-face current in our models vanishes for all values of constant
face growth. slope, the selected value of the slope cannot be predicted in
In this paper, we show that mound formation, slope selecany simple way. This is in contrast to the behavior of ES-
tion, and power-law coarsening can occur in spatially distype models where slope selection occurs only if the surface
cretized versions of a class of 1D continuum growth equacurrent vanishes at a specific value of the slope.
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Next, in Sec. IV, we show that the change in the dynami-initial state with sufficiently high(deep pillars (grooves.
cal behavior of the systentfrom kinetic roughening to Since mound formation in these models is crucially depen-
mound formation and coarseningnay be described as a dent on the occurrence of the instability, the arguments above
first-order nonequilibrium phase transition. Since the instasuggest that the nature of the long-time steady state reached
bility in our models is a nonlinear one, the flat interface isin the conserved model may depend on the choice of the
locally stable in the absence of noise for all values of thehitial state. Indeed, we find from simulations that in a region
model parameterghe strength of the nonlinearity and the ©f parameter space, the mounded and kinetically rough
value of the control parameteiThe mounded phase corre- Phases are both locally stable and the steady-state configura-
sponds to a different stationary solution of the dynamicalfion is determined by the choice of the initial configuration
equations in the absence of noise. We use a linear stabilit§f the intérface. These results imply the surprising conclu-
analysis to find the “spinodal boundary” in the two- Sion that the long-time, steady-state morphology of a grow-
dimensional parameter space across which the mounded st interface as well as the dynamics of the process by which
tionary solution becomes locally unstable. We show that thdhe steady state is reached may be “history dependent”in the
results of this numerical stability analysis can also be obSense that the behavior would depend crucially on the choice
tained from simple analytic arguments. To obtain the phas@f the initial state. A summary of our findings and a discus-
boundary in the presence of noise, we first defineoater ~ SION of the implications of our results are provided in Sec.
parameterthat is zero in the kinetically rough phase and V!l- A summary of the basic results of our study was re-
nonzero in the mounded phase. We combine the numericalljorted in a recent pap¢87].
obtained results for this order parameter for different sample
sizes with finite-size scaling to confirm that this order param- [l. MODELS AND METHODS
eter exhibits the expected behavior in the two phases. The Conserved growth equatiofdeterministic part of the dy-
pk).ha?.e blloundar)r/l that Separ;tes tge moun_deﬂ pr]?hse frrc])m trrl]gmics having zero time derivative for the=0 Fourier
inetically rough one is obtained numerically. The phase : , : '
boundaries for the continuum model with two different formsmOde (I)If the height varéatl)]e/vlth n(_)lljbcqnserved noise arﬁ
of the control function and the atomistic model are found toJ- < &Y used2] to modet nonequitibrium surfacg growt
be qualitatively similar. in molecular beam epitaxyMBE). The conservation is a
The results of a detailed study of the process of coarsen;on>cduence of absence of bulk vacancies, overhangs, and

ing of the mounds are reported in Sec. V. Surprisingly, Wedesorptlon(evaporatlon of atoms from the substpatander

find that the coarsening exponents of the spatiall discretizealotimum MBE growth conditions. Thus, integrating over the
. ; g exp L P y ais whole sample area gives the number of particles deposited.
continuum equation and its atomistic version are different

. . ; This conservation is not strictly valid because of “shot
We propose a possible explanation of this result on the basis_.~ . . .
. . . ) noise” fluctuations in the beam. The shot noise is modeled

of an analysis of the coarsening process in which the probb " . . . .

lem is mapped to that of a Brownian walker in an attractive.”. > additive noise ter.m(r,t.) in the equation of motion of
Mmappec * : : : the interface. The noise; is generally assumed to be

force field. In this mapping, the Brownian walk is supposed . o 9 i y

to describe the noise-induced random motion of the peak O@—correlated in both space and time:

a mound, aqd the aftractive force” represents the interaction (p(r,0p(r' 1'))=2D&%r—r")8(t—t"), 1)

between neighboring mounds that leads to coarsening. We

show that the numerical results obtained for the dynamics ofyherer is a point on ad-dimensional substrate. Thus, a

mounds in the atomistic model are consistent with this exconserved growth equation may be written in a form

planation.

In Sec. VI, we consider the behavior of ttepatially dis- dh .

cretized continuum growth equation for “conserved” noise. ot -Vt @)

The nonlinear instability found in the nonconserved case is

expected to be present in the conserved case also. Howev@mereh(r,t) is the height at point at timet, andj is the

there is an important difference between the two cases. Theurface current density. The surface current models the de-

nonconserved model exhibits anomalous dynamical scalingerministic dynamics at the growth front. As mentioned in

so that the typical nearest-neighbor height difference continSec. I, the presence of an ES step-edge barrier is modeled in

ues to increase with time, and the instability is alwayscontinuum equations of the form of ER) by a term inj

reached33] at sufficiently long times, even if the starting that is proportional to the slope= Vh, with a positive con-

configuration is perfectly flat. Since the continuum modelstant of proportionality. This makes the flat surfdder)

with conserved noise exhibits35] usual dynamic scaling constant for allr] linearly unstable. This instability is con-

with «<<1, the nearest-neighbor height difference is ex-trolled by the introduction of terms involving higher powers

pected to saturate at long times if the initial state of theof the local slopes and higher-order spatial derivatives tof

system is flat. Under these circumstances, the occurrence of We consider the conserved growth equation proposed by

the nonlinear instability in runs started from flat states wouldvillain [29] and Lai and Das SarmgB0] for describing

depend on the values of the parameters. Specifically, the ilMBE-type surface growttin the absence of ES step-edge

stability may not occur at all if the value of the nonlinear parriers. This equation is of the form

coefficient in the growth equation is sufficiently small. At the

same time, the instability can be initiated by choosing an  dh’(r,t")/gt"=—vV*h'+\'V2|Vh'|?+ 5/ (r,t"), (3
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whereh’(r,t") represents the height variable at the poiat 1—e ©x

time t’. This equation is believef2] to provide a correct fX)=——— (7)
description of the kinetic roughening behavior observed in

MBE-type experiment§12]. c>0 being a control parameter. We call the resulting models

In our s_tudy, we numerically integrate the 1D versi_on of“model 1” and “model II,” respectively. This replacement
Eq. (3) using a simple Euler schenj@3]. Upon choosing  amounts to the introduction of an infinite series of higher-
appropriate units of length and time and discretizing in spacgrder nonlinear terms. The time evolution of the height vari-

and time, Eq(3) is written as[33] ables in model | is, thus, given by
hi(t+At)—h;(t) = AtV = V2h;(t) + 1|V hi(1)]?] hi(t+At)—hi(t) = AtV = V2h,(t) + A (1— e 9V /¢]
+ VAt (1), (4) + VAt 7;(1). (8)

whereh;(t) represents the dimensionless height variable ath model Il, the quantitK; is defined as

the lattice pointi at dimensionless tim¢, V and V? are
lattice versions of the derivative and Laplacian operators,
and »;(t) is a random variable with zero average and vari-
ance equal to unity. These equations, with an appropriatﬁl
choice ofAt, are used to numerically follow the time evo-
lution of the interface. In most of our studies, we have use
the following definitions for the lattice derivatives:

Ki({h})=—¥2h +x(1—e c¥nF)c, (9)

While the functionf(x) was introduced in the earlier
ork purely for the purpose of controlling the nonlinear in-
tability, it turns out that the introduction of this function in

he growth equation is physically meaningful. Politi and Vil-

lain [23] have shown that the nonequilibrium surface current
that leads to th&?2|Vh'|? term in Eq.(3) should be propor-

Vhi=(hi;1—hi_1)/2, tional to V|Vh'|? when |Vh’| is small, and should go to
zero when|Vh'| is large. The introduction of the “control
V2h,=h;,.,+hj_;—2h;. (5)  function” f(|Vh;|?) satisfies this physical requirement. We

have also carried out studies of a slightly different model

We have checked that the use of more accurate, left-righivhich we call “model IA") in which the functionf(x) is
symmetric definitions of the lattice derivatives, involving @ssumed to have a form suggested by Politi and Villain:
more neighbors to the left and to the rigl&3], leads to

results that are very similar to those obtained from calcula- f(x)= ,
tions in which these simple definitions are used. We have 1+cx

also checked that the results obtained in the deterministic ) » ]
limit (7=0) by using more sophisticated integration rou- vyherec is, as before, a positive contr_ol parameter. This fun-c-
tines [38] closely match those obtained from the Euler tion has the same asymptotic behavior as that of the function

method with sufficiently small values of the integration time defined in Eq.(7). As we shall show later, the results ob-
step. tained from calculations in which these two different forms

We have also studied an atomistic versjga] of Eq. (3) of f(x) are used are qualitatively very similar. In fact, we
in which the height variablegh;} are integers. This model is expect that the qualitative behavior of these models would be

defined by the following deposition rule. First, a sigayi) the same for any monotonic functidifx) that satisfies the

(10

is chosen at random. Then the quantity following requirements(i) f(x) must be proportional t@ in
the smallx limit, and (ii) it must saturate to a constant value
=2 = 12 asx— o,
Ki({hj)=—V=hi+\[Vhi] ©) We have carried out extensive simulations of both these

. N ) ) models for different system sizes. The results reported here
is calculated for the siteand all its nearest neighbors. Then, pnave been obtained for systems of sizes4l6< 1000. There
a particle is added to the site that has the smallest vallte of jg o significant dependence of the resultsloriThe time
among the sité and its nearest neighbors. In the case of ati%tep used in most of our studies of models | and IA\is
for the smallest value, the sités chosen if it is involved in  — 91. We have checked that very similar results are ob-
the tie; otherwise, one of the sites involved in the tie is chozined for smaller values aht. We used both unbounded
sen randomly. The number of deposited layers provides @cayssian and bounded distributions for the random vari-
measure of time in this model. ables 7; in our simulations of models | and IA, with no

It was found in earlier studief32—34 that both these gjgnificant difference in the results. For computational con-
models exhibit anonlinear instability in which isolated venience, a bounded distributiéaniform betweent 3 and
structures(pillars for\ >0, grooves fo <0) grow rapidly —/3) was used in most of our calculations. Unless other-
if their height(dept) exceeds a critical vglue. This instabil- wise stated, the results described in the foliowing sections
ity can be controlled32—-34 by replacing Vh;|* in Eqs.(4)  were obtained using periodic boundary conditions. The ef-
and (6) by f(|Vh;|?) where the nonlinear functiof(x) is  fects of using other boundary conditions will be discussed in
defined as the following section.
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FIG. 1. Double-log plots of the interface widi as a function 0 100 200 i 300 400 500

of time t for model | with A =4.0, c=0.02 (dash-dotted ling and

for A=4.0, c=0.06 (full line). These data are fdr=500 samples, FIG. 2. Configuration snapshots &t 10°, for model I with \
averaged over 40 independent runs starting from flat initial states=4-0, ¢=0.06 (top pane), model | withA=4.0, c=0.02 (middle
Plots have been shifted vertically for clarity. The values\tfor the ~ Pane), and model IA withx =4.0, andc=0.01 (bottom panel

two different values ot are close to each other at relatively short . ) . S

times (before the onset of the nonlinear instability for=0.02).  times. The interface profiles in the kinetically rough phase
The interface width foc=0.02 at long timesafter the occurrence  (obtained for relatively large values o) and the mounded

of the instability is much larger than that far=0.06. phase(obtained for smalt) are qualitatively different. This
difference is illustrated in Fig. 2 that shows typical interface
lll. MOUND FORMATION AND SLOPE SELECTION profiles in the two different phases. This figure also shows a

typical interface profile for model IA in the mounded regime,
illustrating the fact that the precise choice of the control
ferctionf(x) is not crucial for the formation of mounds. The
@Volution of the interface structure in the mounded regime of
model | is illustrated in Fig. 3 which shows the interface
profiles obtained in a typicdl =200 run starting from a flat
initial state at three different times= 200 (before the onset

It has been demonstrated earli8®,33 that if the control
parametec is sufficiently large, then the nonlinear instability
is completely suppressed and the models exhibit the usu
dynamical scaling behavior with the expec{@d] exponent
values, 8=1/3, z=3, and a=Bz=1. This behavior for
model | is illustrated by the solid line in Fig. 1, which shows

a plot of the widthW as a function of ime for parameter ¢, 5incianilivg. 1= 4000 (after the onset of the instabilty,

valuesA =4.0 andc=0.06. As the value ot is decreased in the coarsening regimeandt = 128 000(in the final stead
with A held constant, the instability makes its appearance;, . 8. This fi urg algo sﬁ?ows the steadv-state interfacey fo-
the heighthy of an isolated pillar(for A>0) increases in : 9 y P

. ) . file of a L=500 sample with the same parameters, to illus-
time if hyin(N,c)<hg<hpga{\,c). The value ofh.;, is '
nearly independent of, and is given byh.. (\.c)=A/x trate that the results do not depend on the sample size.

With A=20 for model 1. The value of increases as is Very similar behavior is found for model Il. Since the
N o max . heights in this atomisti I i I iscret
decreasefi33]. If cis sufficiently largeh,ax is small and the eights in this atomistic model can increase only by discrete

instability d t affect th lina- behavi f alob Iamounts in each unit of discrete time, the increas&\Vodt
Instabiiity does not aftect the scaling benhavior of globaly,q onset of the instability is less rapid here than in the con-
guantities such adV, although transient multiscaling at

) tinuum models | and IA. Nevertheless, the occurrence of the
length scales shorter than the correlation lengtht'# may

. . instability for small values o€ shows up as a sharp upward
be found[32,33 if ¢ is not very large. A< is decreased deviation of theW versust plot from the initial power-law

further, hy,ax becomes large, and when isolated pillars withy, o, o o withg=1/3. This is illustrated by the dash-dotted
ho>hi, are created at an initially flat interface through

fluctuations, the rapid growth of such pillars to heidi,«
leads to a sharp upward departure from the power-law scal- 5007 A,
ing of Wwith timet. The time at which this departure occurs b
varies from run to run. This behavior for model | with
=4.0 andc=0.02 is shown by the dash-dotted line in Fig. 1.
This instability leads to the formation of a large number
of randomly distributed pillars of height close g, AS
the system evolves in time, the interface self-organizes to
form triangular mounds of a fixed slope near these pillars.

h()

t=1.28x10" {¥128000

These mounds then coarsen in time, with large mounds —5000 50 100 150 200
growing larger at the expense of small ones. In this coarsen-
ing regime, a power-law growth a& in time is recovered. FIG. 3. The interface profile at three different timeis=@00,

The slope of the sides of the triangular mounds remains corntp00, and 128 000N a run starting from a flat state forla= 200
stant during this process. Finally, the system reaches a steagymple of model | with. =4.0 andc=0.02. The dashed line shows
state with one peak and one trough periodic boundary the profile for anL=500 sample with the same parameters at
conditions are usedand remains in this state for longer =1.28<10’, with both axes scaled by 2.5.
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FIG. 6. The interface profile at three times<(1%?, 1¢°, and
FIG. 4. Double-log plots of the interface widW as a function 3% 10°) in a run starting from a flat state forla=200 sample of
of time t for model Il withA =2.0, ¢=0.005(dash-dotted lingand  model II with A=2.0 andc=0.005. The profile of arL=500
for A=2.0,c=0.015(full line). These data are far=500 samples, sample with the same parameterstat3x10°, with both axes
averaged over 40 independent runs starting from flat states. Plotgaled by 2.5, is shown by the dashed line.
have been shifted vertically for clarity. As in Fig. 1, the values\bf

in the two plots are similar at relatively short tim@efore the onset . . - . .
of the nonlinear instability foc=0.005), and the interface width Show that if the slopes of the “uphill” and “downhill” parts

after the occurrence of the instability for=0.005 is much larger  Of the steady-state profile are the same in magnittiue is
than that forc=0.015. true for our models then the two extrema must be separated
by =L/2. Therefore, it is clear that the steady state obtained
line in Fig. 4, obtained from simulations of model Il with in simulations with periodic boundary conditions must have
A=2.0,c=0.005. This behavior is to be contrasted with thata peak and a symmetrically placed trough separated by dis-
for A=2.0,¢=0.015, shown by the full line in Fig. 4, where tance=L/2.
the nonlinear instability is absent. The difference between the To check whether the basic phenomenology described
surface morphologies in the two regimes of model Il is illus-above depends on the choice of the boundary condition, we
trated in Fig. 5. The kinetically rough, self-affine morphol- have carried out test simulations using two other boundary
ogy obtained forc=0.02 is clearly different from the conditions: “fixed” boundary condition, in which the height
mounded profile found foc=0.005. The time evolution of Vvariable to the left of =1 and to the right of=L are pinned
the interface in the mounded regime of this model is illus-to zero at all times, and “zero-flux” boundary condition with
trated in Fig. 6. The general behavior is clearly similar to thatvanishing first and third derivatives of the height at the two
found for models | and IA. This figure also shows a properlyends of the sample. For these boundary conditions, the de-
scaled plot of the interface profile ofla=500 sample with ~terministic part of the growth equation does not strictly con-
the same parameters at a time in the coarsening regime. It §&rve the average height. As a result, the symmetry between
clear from this plot that the nature of the interface and th¢he mound and the trough, found in the long-time steady
value of the selected slope do not depend on the sample sizéfate obtained for periodic boundary condition, is not present
The occurrence of a peak and a symmetrically placedf one of the other boundary conditions is used. In particular,
trough in the steady-state profiles shown in Figs. 3 and 6 is & is possible to stabilize a single mound or a single trough in
consequence of using periodic boundary conditions. The dghe steady state for the other boundary conditions. Since the
terministic part of the growth equation of E¢) strictly ~ heights at the two ends must be the same for fixed boundary
conserves the average height if periodic boundary conditiongondition, the two extrema in a configuration with one
are used. So, the average height remains very close to zerofffound and one trough must be separateehy2, as shown
the initial state is flat, as in most of our simulations. Thein Fig. 7. The two extrema would not be separated-hly/2
steady-state profile must have at least one peak and orer the zero-flux boundary condition. These effects of bound-

trough in order to satisfy this requirement. Also, it is easy toary conditions are illustrated in Fig. 7 which shows profiles
in the mounded regime obtained for the three different

boundary conditions mentioned above. It is clear from the
200 . - .
results shown in this figure that the basic phenomenology,
OM i.e., the formation and coarsening of mounds and slope se-
-200 lection, is not affected by the choice of boundary conditions.
= 0 100 200 300 400 500 In particular, the values of the selected slope and the heights
< of the pillars at the top of a mound and the bottom of a
500 trough remain unchanged when boundary conditions other
0 than periodic are used.
-500 The selection of a “magic slope” during the coarsening
0 100 200 300 ;400 500 process is clearly seen in the plots of Figs. 3 and 6. More

quantitatively, the probability distribution of the magnitude
FIG. 5. Configuration snapshots &t 10° for model Il with A of the nearest-neighbor height differencgs:|h;, 1 —h;| is
=2.0,¢=0.02(top panel, and\=2.0, c=0.005 (bottom panel found to exhibit a pronounced peak at the selected value of
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800
8.2
400 8
7]
= 7.8
< o,
0 5 10%t 10
-400 FIG. 9. Average slope of the mounds as a function of time for

model | in the mounded phase € 4.0, c=0.02) during the coars-
ening processt==8000 tot=1.28<10°. The data are fot. =500
FIG. 7. Height profiles for model IN=4.0, c=0.02) at time  samples averaged over 40 runs.

t=1.28<10" for periodic boundary conditiongfull line), fixed

boundary conditiongdashed ling and zero-flux boundary condi- interface is a locally stable steady-state solution of the zero-

tions (dash-dotted ling noise growth equation for all parameter values. When the
" . instability is absente.g., for large values of the control pa-

the slope, and the position of this peak does not change duﬁ’?meterz), this “fgxe%-point” golution of the noise-frepe

N9 th_e coarsening process. Figure 8 shows a comparison gquation is transformed to the kinetically rough steady state

thg d|st(|but|on of the magr_ntude of the nearestjne|ghb0ﬁn the presence of noise. The mounded steady state obtained

height difference for model | in the mounded and klnetlcallygjr small values ofc must correspond to a different fixed

rough phases. A bimodal distribution is seen for the mounde oint of the zero-noise growth equation. Such nontrivial

phase, the two peaks corresponding to the values of the s ixed-point solutions may be obtained from the following

lected slope and the height of the pillars at the top and bOtéimpIe calculation.

tom of the pyramids. The kinetically rough phase, on the . S .

other hand, exhibits a distribution peaked at zero. Figure % aTheber;gLeprgi?r;;?ee d togs'f I=O)x oif trl?]hgglirxnlo(ulnd
shows the values of the selected slope at different times i y i g 20T ALy High 70 J
the coarsening regime of model I. The constancy of the slope~ 1)X2: Wherex, is the height of the pillar at the top of the

is clearly seen in this plot. All these features remain true fofMound andx; is the selected slope. This profile would not
the discrete model. Plots of the distributi®s) at two dif- ~ change under the dynamics of E@) with no noise if the

ferent times in the coarsening regime of model Il are showrollowing conditions are satisfied:
in Fig. 10. The peak position shows a small shift in the =5 —ofon |2
positive direction adg is increased, but this shift is small Vehi;—A(1-e W)le
compared to the width of the distributions, indicating near
constancy of the selected slope. The value of the selected
slope depends on the parameterandc. This is discussed in

the following section.

=¥%h, .- N (L1—e IV e
=¥%h; .~ M(1—e o2l (1)

IV. DYNAMICAL PHASE TRANSITION These conditions lead to the following pair of nonlinear

) - o equations for the variables andx, used to parametrize the
The instability that leads to mound formation in our mod- yofile near the top of a mound:
els is a nonlinear one, so that the perfectly flat state of the

2
0.014 0.12 2x;—N[1-e “2]/c=0,
_ 3%, —Xp— N[ 1—e St tx4)/c =0, (12)
iy (2
= g
0.005 0.05
0 0

0 40 s 80 0 5% 10

FIG. 8. Distribution of the magnitude of the nearest-neighbor
height differences for model | withA = 4.0 andc=0.02(left pane},
showing the bimodal nature of the distribution, characteristic of a
mounded phase with slope selection. The distributionXfer4.0,
¢=0.05 (right pane] does not show this behavior. These distribu-  FIG. 10. Distribution of the magnitude of the nearest-neighbor
tions are measured in the steady state 128 000) forL =200 height differences for model 1l with A=2.0 andc=0.005, at two
samples. different times;t=10° (full line) andt= 10" (dashed ling

A
100 s 180
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op

0.06 0.07

Cc

FIG. 12. The dependence gf the closest-to-zero eigenvalue of

with A =4.0 andc=0.02 (full line), compared with a steady-state the stability matrix for the mounded fixed point of model | with

profile (dash-dotted linegfor the same parameter values. The dashed
line shows a steady-state profile olL.a=200 sample of model 1A
with A=4.0, c=0.01(both axes scaled by 2,5and the dotted line
shows an invariant solution of the corresponding continuum equa:
tion.

=4.0, L=500, on the control parameter The inset shows the
right eigenvectop; corresponding to this eigenvalue near the point

where k crosses zero.

constant, so thats(x)/dx would vanish, whereas the second

. . - . . term would give a positive contribution K is positive. At
These equations admit a nontrivial solution for sufﬁmentlythe peak of the profile, the second term would be zero be-

smallc, and the resulting values &f andx, are found to be

causes is zero, butds(x)/dx would be negative, making the

quite close to the results obtained from numerical integraleft-hand side of Eq(14) positive. While a closed-form so-
tion. A similar analysis for the profile near the bottom of & 4ion of this differential equation cannot be obtained, the

trough [this amounts to replacing, by —x, in Eq. (12)]
yields slightly different values fox; andx,. The full stable
profile (a fixed point of the dynamics without nojseith one
peak and one trough may be obtained numerically by calcu
lating the values ofh;} for which g;, the term multiplying

At on the right-hand side of Ed8), is zero for alli. The
fixed-point values ofh;} satisfy the following equations:

=V~ ¥2h+a(1-e 9" F)c]=0 forall i.
(13

A numerical solution of these coupled nonlinear equation
shows that the small mismatch between the values okear
the top and the bottom is accommodated by creating a fe
ripples near the top. The numerically obtained fixed-point
profile for aL =500 system witth =4.0, c=0.02 is shown

in Fig. 11, along with a typical steady-state profile for the
same system. The two profiles are found to be nearly ident
cal, indicating that the mounded steady state in the presen
of noise corresponds to this fixed-point solution of the noise
less discretized growth equation.

Fixed-point solutions of the continuum equation, E3),
with v=1 and|Vh|? replaced byf(|]Vh|?) wheref(x) has
the form shown in Eq(10) may also be obtained by a semi-
analytical approach following Raczt al. [39]. We consider

the following first-order differential equation with appropri-
ate boundary conditions:

ds 2

dx

A S =
1+cs?

A, (14)

wheres(x) =dh(x)/dx is the local slope of the interface and

b

stationary solutions of the continuum equation that satisf;iw

value of s(x) at any pointx may be calculated with any
desired degree of accuracy by numerically solving a simple
algebraic equation. The height profile is then obtained by
integratings(x) with appropriate boundary conditions. In our
calculation, we used the procedure of Ratal.[39] to take
into account periodic boundary conditions. In Fig. 11, we
have shown a typical steady-state profile &fa200 sample

of model IA with A\=4.0 andc=0.01, and a fixed-point
solution of the corresponding continuum equation. The value
of the constanf in Eq. (14) was chosen to yield the same
slope as that of the steady-state profile of the discrete model.

SThese results show that the steady-state properties for the

two forms of f(x) are very similar, and the continuum equa-
on admits stationary solutions that are very similar to those
f the discretized models.

The local stability of the mounded fixed point may be
determined from a calculation of the eigenvalues of the sta-

bility matrix, M;; = dg; / dh;, evaluated at the fixed point. We

[0)

ffd that the largest eigenvalue of this matfiisregarding

the trivial zero eigenvalue associated with a uniform dis-
placement of the interfacé,— h;+ & for all i) crosses zero
at c=c4(\) (see Fig. 12 signaling an instability of the
mounded profile. The structure of E@8) implies that
ci(N\)xA2. Thus, for 0<c<c;(\), the dynamics of Eq(8)
ithout noise admits two locally stable invariant profiles: a
rivial, flat profile with h; the same for all, and a nontrivial
one with one mound and one trough. Depending on the ini-
tial state, the noiseless dynamics takes the system to one of
these two fixed points. For example, an initial state with one
pillar on a flat background is driven by the noiseless dynam-
ics to the flat fixed point if the height of the pillar is smaller
than a critical value, and to the mounded one otherwise.
The “relevant” perturbation that makes the mounded

A is a constant that must be positive in order to obtain dixed point unstable at=c, is a uniform vertical relative
solution that resembles a triangular mound. At large disdisplacement of the segment of the interface between the

tances from the peak of the mound, the slgwould be

peak and the trough of the fixed-point profile. This can be
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0.2 o the mounded stationary profiles for the continuum equation
°‘._ are obtained from a numerical calculation, it would be ex-
0.15/ & tremely difficult, if not impossible, to carry out a linear sta-

o
(3]

bility analysis for such stationary solutions without discretiz-
y ing space.

In the presence of the noise, the perfectly flat fixed point
.4 transforms to the kinetically rough steady state, and the non-
2T trivial fixed point evolves to the mounded steady state shown
in Fig. 11. A dynamical phase transition a=c,(\)
<c4(N\) separates these two kinds of steady states. To calcu-
latec,(N\), we start a system at the mounded fixed point and
follow its evolution according to Eq(8) for a long time
(typically t=10% to check whether it reaches a kinetically

Il (diamondg, andc, of model IA(squares Inset: the probabilities rough steady state. By repeating this procedure many times,

P, (circles andP,, (triangles defined in text, as functions affor the pr.obablhltyPl()\,c) ,Of a tran;mon toa klngtlcally rough
model | with A =4.0, L = 200. state is obtained. For fixed, P, increases rapidly from O to
1 asc is increased above a critical value. Typical results for

seen by numerically evaluating the right eigenvector correP1 as a function o for model | with A =4.0 are shown in
sponding to the eigenvalue of the stability matrix that crosse§1€ inset of Fig. 13. The value af at whichP,=0.5 pro-
zero atc=c,. This is demonstrated in the inset of Fig. 12. vides an estimate af,. Another estimate is obtained from a
Also, examination of the time evolution of the mounded Similar calculation of;(X,c), the probability that a flat ini-
structure for values o€ slightly higher thanc; shows that tial state evolves to a mounded steady state. As expeRted,
the instability of the structure first appears at the bottom ofncreases sharply from 0 to 1 ass decreasedsee inset of
the trough. Taking cue from these observations, the vajue Fig: 13, and the value o€ at which this probability is 0.5 is
can be obtained from a simple calculation. We consider thélightly lower than the value at which;=0.5. This differ-

profile near the bottom of a trough ati,. As discussed ence reflects finite-time hysteresis effects. The value,dé
! 0

. ference between the two estimates provides a measure of the
+ C L =xat(li]— S L

X Migs) %o (1] 1)X_2’ and the values. 0k, and X2 ncertainty in the determination @f. The phase boundary
may be obtained by solving a pair of nonlinear equationsypained this way is shown in Fig. 13, along with the results

Eq. (12) with x; replaced by—x,. We now consider a per- o ¢.(\) obtained for the discrete model Il from a similar
turbation of this profile, in which the heights on one side Ofanalysis.

io are all increased by a small amouét[i.e., h; ,;=Xo The general behavior found for all the models as the pa-
+(j=1)xa+ 6, hj —j=xo+(j—1)x; with j>0], and use rameters\ andc are varied is qualitatively very similar to
Eg. (8) to calculate hows changes with time, assuming its that in equilibrium first-order phase transitions of two- and
value to be small. The requirement thainust decrease with three-dimensional systems as the temperature and other pa-
time for the fixed-point structure to be locally stable leads torameters, such as the magnetic field in spin systems, are var-
the following equation for the value afat which the struc- ied. To take a standard example of an equilibrium first-order
ture becomes unstable: transition, we consider a system described by a Ginzburg-
Landau free energy functiontQ] with a cubic term. For
temperatures in the range,<T<Ts whereT, and T, are,
respectively, the lower and upper spinodal temperaf4@ls

this free energy has two local minima representing the two
By substituting the numerically obtained valuesxgfandx, phases of the system. A first-order equilibrium phase transi-
in this equation, the critical valug,(\) of the parametecis  tion occurs aff =T, with To<T.<Tq.

obtained as a function of. The values obtained this way are ~ Now consider the dynamics of this system according to
in good agreement with those obtained from our full numeri-the time-dependent Ginzburg-Landau equafidf]. In the

cal calculation of the eigenvalues of the stability matrix. Theabsence of noise, the dynamics exhibits two locally stable
“spinodal” lines (i.e., the lines in thec-\ plane beyond fixed points for To<T<Tg, corresponding to the two
which the mounded fixed point is unstabfer models | and minima of the free energy. This is analogous to the two lo-
IA are shown in Fig. 13. Both these lines have the expectedally stable fixed points of our nonequilibrium dynamical
form, c;(A\)=\2. It would be interesting to carry out a simi- systems foc<<c,(\). If noise is present, the system selects
lar stability analysis for the mounded stationary profdee one of the phases corresponding to the two fixed points of
Fig. 11) of the continuum equation corresponding to modelthe noiseless dynamics, exceptTatwhere both phases co-

IA. Such a calculation would have to be performetihout  exist. The local stability of the mean-field ordered and disor-
discretizing spacef we want to address the question of dered states in the temperature interval betweBgand Ty is
whether the behavior of the truly continuum equation is simi-manifested in the dynamics as finite-time hysteresis effects.
lar to that of the discretized versions considered here. W&he behavior we find for our nonequilibrium dynamical
have not succeeded in carrying out such a calculation: sinceodels is qualitatively similar: the system selects the steady

5

FIG. 13. Critical values of the control parameteas functions
of \: ¢, of model I(circles, ¢, of model I (triangles, c, of model

E(xl—xz)e*C(XfXZ)z’4= 1. (15
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FIG. 14. Two-phase coexistence near the phase transition in

model I. The plot shows an interface profile ofLa=500 sample
with A=4.0,c=0.42.

FIG. 15. Finite-size scaling for the order parameterThe left
panel shows double-log plots ofL as a function of the sample size
L for model I in the mounded phasg € 4.0, c=0.02, circle$ with

. I . slope 1.06:0.01 and in the kinetically rough phasa=4.0, ¢
state corresponding to the moundédrdered”) fixed point =0.05, diamondswith slope 0.8%0.02. The right panel shows

of the noiseless dynamics as the antrpl paramelf(_analo- similar plots for model Il in the mounded phasa&=2.0, c
gous to the tempergtuf& of the equilibrium sys.tel)nls de- =0.005, circlepwith slope 1.0&:0.01 and in the kinetically rough
creased belove, which is smaller than the spinodal value phase (=2.0,c=0.015, diamonds0.88+0.02. The straight lines
c,. If this analogy with equilibrium first-order transition is are the best power-law fits to the data.

correct, then our models should show hysteresis and coexist-

ence of kinetically rough and mounded morphologies forgjyce there are two domain walls separated-Hy/2 in the

values ofc nearcy(A). As mentioned above, we do find gteady state in the mound-formation regime, the quantity
hysteresis(see inset of Fig. 13in finite-time simulations

with values ofc nearc,. Evidence for two-phase coexistence 1/ L
is presented in Fig. 14, where a snapshot of the interface m=— <E UJeZwii/L>, (16)
profile for a L=500 sample of model I witih=4.0, c LI\i=2

=0.42 is shown. This value af is very close to the critical
valuec, for A=4.0 (see inset of Fig. 13 This plot clearly ~wherei=~1 and(---) represents a time average in the
illustrates the simultaneous presence of mounded and rougdteady state, would be finite in the—co limit. On the other
morphologies in the interface profile. hand,m would go to zero for largé in the kinetically rough
The results described above suggest that our growth modegime because the number of domains in the steady-state
els exhibit afirst-order dynamical phase transitioat c profile would increase with. We find numerically that in the
=C,(N). To make this conclusion more concrete, we need tkinetically rough phasem~L~Y with y=0.2. The finite-
define anorder parameterthat is zero in the kinetically size scaling data for the order parametefor models | and
rough phase, and jumps to a nonzero value as the systelnfor both faceted and kinetically rough phases are shown in
undergoes a transition to the mounded phase=at,. The Fig. 15. Itis seen thanL varies linearly with the system size
identification of such an order parameter would also be use: in the mounded phase, whereas~ L'~ with y=0.2 for
ful for distinguishing between these two different kinds of model | andy=0.15 for model Il in the kinetically rough
growth in experiments—as mentioned in the Introduction, itphase. So, in thé —c limit, the order parameter would
is difficult to experimentally differentiate between kinetic jump from zero to a value close to unity ass decreased
roughening and mound formation with coarsening from meabelowc,(\). This is exactly the behavior expected at a first-
surements of the usual bulk properties of the interface. Aorder phase transition.
clear distinction between the two morphologies may be ob- The occurrence of a first-order phase transition in our 1D
tained from measurements of the average number of extremaodels with short-range interactions may appear
of the height profile[41]. The steady-state profile in the surprising—it is well knowrj40] that 1D systems with short-
mound-formation regime exhibits two extrema &l values  range interactions do not exhibit any equilibrium thermody-
of the system sizé. In contrast, the number of extrema in namic transition at a nonzero temperature. The situation is,
the steady state in the kinetic roughening regime increasedsowever, different for nonequilibrium phase transitions: In
with L as a power laW41]—we find that for values of for  contrast to equilibrium systems, a first-order phase transition
which the system is kinetically rough, e.g., far=4.0, c may occur in one-dimensional nonequilibrium systems with
=0.05 for model I, the average number of extrema in theshort-range interactions. Several such transitions have been
steady state is proportional to® with §=0.83. This obser- well documented in the literatufd2]. So, there is no reason
vation allows us to define an “order parameter” that is zeroto a priori rule out the occurrence of a true first-order tran-
in the largee, kinetic roughening regime and finite in the sition in our 1D nonequilibrium systems. As discussed
smallc, mound-formation regime. Let; be an Ising-like above, our numerical results strongly suggest the existence
variable, equal to the sign of the slope of the interface at sitef a true phase transition. However, since all our results are
i. An extremum in the height profile then corresponds to éased on finite-time simulations of finite-size systems, we
“domain wall” in the configuration of the{o;} variables. cannot claim to have established rigorously the occurrence of
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shots of the system in the coarsening regime are shown in
3000 Figs. 16 and 17 for model | and model I, respectively. The
constancy of the slope during the coarsening process is
clearly seen in these figures. As discussed in the Introduc-
tion, the constancy of the slope implies that if the typical
lateral size of a mound increases in time as a power law with

exponentn [ R(t)«t"], then the width of the interface would
also increase in time as a power law with the same exponent
0/\/\/\w/\"\/\ [W(t)=t? with B=n]. Therefore, the value of the coarsen-

0 250 i 500 ing exponeni may be obtained by measuring the width
as a function of time in the coarsening regime. In Fig. 18, we
FIG. 16. Snapshotst€2x10%, 6x10%, 1(°, 1.4x10°, and  show a plot of the width as a function of time for model |
1.28x10") of the profile of anL =500 sample of model (profiles  with \ =4.0, c=0.02. It is clear from the plot that the time
at different times have been shifted in the vertical direction fordependence of the width is well described by a power law
clarity) with A=4.0, c=0.02 in the coarsening regime. with 8=n=0.34+0.01. A similar plot for the discrete model
Il with A=2.0, ¢=0.005, shown in Fig. 19, also shows a
a true phase transition in our models. The crucial question ifBower-law growth of the width in the long-time regime, but
this context is whether the order parametewould be non-  the value of the coarsening exponent obtained from a power-
zero in the mounded phase in the-c limit if the time  |aw fit to the data is8=n=0.50+0.01, which is clearly
average in Eq(16) is performed over arbitrarily long times. gifferent for the value obtained for model I. This is a surpris-
Since the steady-state profile in this phase has a singl@g result: model Il was originally defind@1] with the spe-
mound and a single trougfthis is clear from our simula- cific purpose of obtaining an atomistic realization of the con-
tions), the only way in whichm can go to zero is through tinuum growth equation of Eq3), and earlier studief31—
strong “phase fluctuations” corresponding to lateral shifts 0f33] have shown that the dynamical scaling behavior of this
the positions of the peak and the trough. We do not find anynodel in the kinetic roughening regime is the same as that of
evidence for such strong phase fluctuations. We have calcyngdel I. Also, we have found in the present study that the
lated the time autocorrelation function of the phase of thqjynamicfﬂ phase transition in this model has the same char-
order parameter for small samples over times of the order Ojcter as that in model I. So, the difference in the values of the
10" and found that it remains nearly constant at a value closgoarsening exponents for these two models is unexpected. As
to unity over the entire range of time. So, if such phasenoted earlier, there is some evidence suggesting that the typi-
fluctuation eventually makes the order parameter zero for aa| slope of the mounds in model Il increases very slowly
values ofc, then this must happen over astronomically longwith time (see Fig. 18 However, this “steepening,” if it
times. Our finite-time simulations cannot, of course, rule outactually occurs, is too slow to account for the large differ-

h(i,t) t

this possibility. ence between the values of the coarsening exponents for
models | and II.
V. COARSENING OF MOUNDS In order to understand these numerical results, we first

address the question of why the mounds coarsen with time.

During the late-stage evolution of the interface, theThis problem has certain similarities with domain growth in
mounds coarsen with time, increasing the typical size of the
triangular pyramidal structures. The process of coarsening
occurs by larger mounds growing larger at the expense of the

smaller ones while always retaining their magic slope. Snap- 6
=
4500 e |- 2
i) b
3000 <
‘ W 0f -2
W ’ S L 7

fo/\/\/\‘/\/\/\ FIG. 18. Double-log plots of the interface widi as a function

of time t for model | with A =4.0 andc=0.02, with noise(dash-

0 100 200 i 300 400 500 dotted ling, and without noisddotted ling averaged over 40 runs
for L=1000 samples. The dashed line shalsst data for model
FIG. 17. Snapshots t£1100000, 1200000, 1250000, IA with A=4.0, c=0.01, averaged over 60 runs fdr=500
1301000, 1450000, 1606 000, 1660000, 1670000, 1680 000samples. The solid line represents power-law behavior with expo-
1700 000) of the profile of & =500 sample of model lprofiles at  nentn=1/3. Inset: finite-size scaling data for the inverse of the
different times have been shifted in the vertical direction for clarity closest-to-zero eigenvalue of the stability matrix for the mounded
with A=2.0, c=0.005 in the coarsening regime. fixed point of model | withn =4.0, ¢c=0.02.
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10 : - , fixed point provides an estimate of the time scale over which
configurations close to the fixed point evolve to the fixed
point itself. In the inset of Fig. 18, we have shown the de-
pendence of the magnitude, of the closest-to-zero eigen-
value forh=4.0, c=0.02 on the system siZe The eigen-
value scales with the system sizelas®, indicating that the
time scale for the decay of fluctuations with length sdals
proportional toL 3. This is consistent with the observed value
of the coarsening exponemts=1/3, which indicates that the
time scaler(x) for the coalescence of mounds separated by
0 6 nt 12 18 distancex is proportional tox"~ x5,
Coarsening data for model IA are shown in Fig. 18. In this
FIG. 19. Double-log plot of the interface widilV as a function  model, there is a long-time interval between the onset of the
of time t for model Il withA=2.0 andc=0.005(so|id Ilne) for L |nstab|||ty and the beginning Of power-|aw Coarsening_ Dur-
=1000 samples averaged over 40 runs. The dash-dotted and dashgg) this time interval, the interface segments near the tall
lines represent power-law behavior with exponent1/3 andn  yijjars formed at the instability organize themselves into tri-
=1/2, respectively. angular mounds. This process produces a plateau in the
width versus time plot. Eventually, however, power-law
spin system$43]. Using the Ising variable§o;} defined in  coarsening witlh=1/3 is recovered, as shown by the dashed
the preceding section, each height profile can be mapped tol&e in Fig. 18.
configuration of Ising spins. The coarsening of mounds then Going back to the discrete model II, we first examined its
corresponds to a growth of the typical size of domains ofcoarsening dynamics in the absence of noise. The stochastic-
these |Sing Spins_ However, arguments based on Considéfy in this model arises from two sources: first, the random-
ations of the free energiat finite temperaturer energy(at ~ Ness associated with the selection of the depositiori fite
zero temperatupewhich are often used in studies of domain quantityK;({h;}) defined in Eq(9) is calculated at this site
growth, do not apply to our nonequilibrium growth models. and at its nearest-neighbor siteand second, the random-
The reason for the coarsening of mounds in our models mustess in the selection of one of the two neighbors of isite
be sought in the relative stability of different structures undercase of a tie in their values d{;. In order to make the
the assumed dynamics and the effects of noise. dynamics deterministic, we employ a parallel update scheme
We have found numerically that fixed points of E§) in which all the lattice sited,=1, ... L, are updated simul-
with two mounds and troughs are unstable. These resulf@neously instead of sequentially. The randomness associated
suggest that the coarsening of the mounds in model | reflecwith the selection of a neighbor in case of a tie is eliminated
the instability of structures with multiple mounds and by choosing the right neighbor if the serial number of the
troughs. If this is true, then coarsening of mounds should b@ccurrence of a tie, measured from the beginning of the
observed in this model even when the noise term in(Bxjs simulation, is even, and the left neighbor if the serial number
absent. To check this, we follow numerically the time evolu-is odd. To study coarsening in this deterministic version of
tion (in the presence of noisef an initial configuration with  model Il, we prepare an initial structure with two identical
a pillar of heighthy>h,;i,(\,C) at one site of an otherwise mounds separated by distance The slope of these mounds
flat interface until the instability caused by the presence ofs chosen to be equal to the “selected” value found in simu-
the pillar is well developed. The profiles obtained for differ- lations of the original model. We then study the time evolu-
ent realizations of the noise used in the initial time evolutiontion of this structure according to the parallel dynamics de-
are then used as initial configurations for coarsening run§ned above, monitoring how the distaneebetween the
without noise. The dotted line in Fig. 18 shows the widthpeaks of the mounds changes with timéssuming power-
versus time data obtained from this calculation. The coarserfaw coarsening with exponent the separation at timet is
ing exponent in the absence of noise is found to be the sanfxpected to have the form
(n=1/3) as that of the noisy system, indicating that the
coarsening in this model is driven by processes associated
with the deterministic part of the growth equation. X(t)=(xg"—=Ct)", 17
The different steps in the coalescence of two mounds are
illustrated in the snapshots of interface profiles shown in Fig.
17 where one can see how the two mounds near the centathereC is a constant. In Fig. 20, we have shown the time
come together to form a single one as time progresses. Firglgpendence af(t) for three different initial separationgg
the separation between the peaks of the mounds decrease80,90, and 100, and fits of the data to the form of @q),
with time. When this distance becomes sufficiently small, theyielding the result 1=2.9+0.1. From these observations,
“V-shaped” segment that separates the peaks of the moundse conclude that the coarsening exponent in the zero-noise
“melts” to form a rough region with many spikes. This re- limit of model Il is the samer{=1/3) as that found for the
gion of the interface then self-organizes to become the topwo versions of the continuum model. The observation that
part of a mound. The absolute value of the closest-to-zerthe coarsening exponent for the noisy version of model Il is
eigenvalue of the stability matrix for the single-moundeddifferent from 1/3 then indicates that the effect of noise in the
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FIG. 21. The solid line shows the average value of the separa-
tion x(t) between mound tiptsee text as a function of time for a
two-mounded structure for model Il. The data shown are Nor
=2.0, c=0.005, L=500, x,=100, averaged over 800 runs. The
dashed line showséx(t)) calculated for the reduced model of Eq.
(18) with C=285.0 andD =0.15.

FIG. 20. Peak separationas a function of time for a two-
mounded structure for model 1l with parallel updatese text. The
data shown are fox=2.0, c=0.005,L=500. The initial value of
the separation ix,=80 (squarel X,=90 (diamond$, and x,
=100 (circles. The solid lines represent the fits described in the
text.

discrete model igjualitatively differenfrom that in the con- regime as the value of, is decreased. This crossover is
tinuum models. We discuss below a possible explanation oéxpected to occur neay=x.~C/D, for which the values
this behavior. of 7 obtained from the two individual terms in EQL8) be-
The fact that noiseless versions of all three models exhibitome comparable.
the same value of the coarsening exponent 1/3) suggests To test the validity of this reduced description, we have
that the coarsening is driven by an effective attractive intersimulated the evolution of a two-mounded structure in the
action between the peaks of neighboring mounds. The oteriginal model IIl. The initial growth of(x?(t))—(x(t))?
served value oh suggest$44] that this attractive interaction with time is found to be linear, indicating the presence of a
is proportional to 2 wherex is the separation between the random additive noise in the effective equation of motion of
mound tips. This interaction would lead to the observed rex. Figure 21 shows the time dependencexft)) obtained
sult, 7(x) «x3, in the noiseless limit if the rate of changeyof ~from simulations ofL=500 samples of model Il with
with t is assumed to be proportional to the attractive force=2.0, ¢=0.005, andx,=100. In this plot, 18 units of
(*overdamped limit”). The presence of noise in the original simulation “time” (number of deposited layerss taken to
growth model leads to a noise term in the equation of motiorbe the unit oft. The number of independent runs used in the
of the variablex, but the nature of this noise term is not clear. calculation of averages is 800. The observed dependence of
Since the observed coarsening dynamics in the noisy modek(t)) ont can be described reasonably well by the reduced
[l (n=0.5) suggests a similarity with random walks, we pro-equation of Eq(18) for appropriate choice of the values of
pose that the effective dynamics of the variable governed the parameter€ and D. As shown in Fig. 21, théx(t))

by the kinetic equation calculated numerically from Eq(18) with C=285.0 and
2D =0.3 provides a good fit to the data obtained from simu-
X lations of the growth model. For such values®éndD, and
—=—C/x>+ g(t), 18 : ; ; ’
dt X+ () (18 xo~L whereL=1C is the sample size used in the calcula-

. . ) ) tion of the coarsening exponeridx,/C is of order unity,
where 7 is a Gaussiang-correlated noise with zero mean jngicating that the effects of the noise term in Ebg) should
and variance equal tol2 In this phenomenological descrip- pe observed in the simulation data. We, therefore, conclude
tion, the coarsening of a two-mounded structure in model lkhat the presence of an additive random noise term in the
is mapped to a Brownian walk of a particle in an attractiveeffective equation of motion for the separation between the
pOtential f|e|d W|th an absorbing Wa.” at the Origin, SUCh thatpeaks of neighboring mounds in mode| 1 is a p|ausib|e ex-
the particle cannot escape once it arrives at the origin. Hergyjanation for the observed value of the coarsening exponent,
the quantity of interest is the typical first passage timee., p=1/2.
the time taken by a particle to reach the orjgas a function In view of this conclusion, it is interesting to enquire why
of X0, the initial distance of the partiCIe from the Origin. In the Coarsening exponentfor models | and IA has the value
the noiseless limitD =0), 7 is equal tox3/(3C), and inthe  1/3 characteristic of dynamics governed by the deterministic
purely Brownian walk limit C=0), the typical value ofr  interaction between mound tips. We cannot provide a conclu-
should be of the order af3/D. Therefore, for sufficiently  sive answer to this question. One possibility is that the addi-
large values ofky, random-walk behavior characterized by tive random noise in the original growth equations for these
n=1/2 is expected. However, for relatively small values ofmodels does not translate into a similar noise in the effective
Xg, the behavior should be dominated by the attractive interequation of motion for the separation of mound tips. A sec-
action. Therefore, we expect that the dynamics described bgnd possibility is that the equation of motion for the separa-
Eq. (18) with nonzeroC and D would exhibit a crossover tion x for these models also has the form of E8), but the
from a noise dominated regime to an interaction dominatedelative strength of the noise is much smaller, so that the
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crossover value. is much larger than the typical sample that the exponents that describe the scaling behavior in the
sizes used in our simulations. Under these circumstances, thénetically rough phase depend strongly on the nature of the
dynamics ofx would be governed by the interaction amd noise. In particular, the exponents for conserved noise are
would be proportional ta3, giving the value 1/3 for the expected to be quite different from those describing the be-
coarsening exponemt If the second explanation is correct, havior for nonconserved noise. The occurrence of the non-
then one should observe a crossover from1/3 ton=1/2 linear instability that leads to the mounded phase in our mod-
in models | and IA as the sample sikds increased. We do €ls is contingent upon the spontaneous formation of pillars of
not find any evidence for such a crossover in our simulationsheight ho>hpin(X,c), if the initial state of the system is
While the purely empirical reduced model describedcompletely flat. The probability of formation of such pillars
above provides a plausible explanation of the observedepends cruciallf33] on the values of the roughening ex-
coarsening behavior in model 1, it should be mentioned thaponents which, in turn, are strongly dependent on the nature
the assumption of the presence of an additive random noigef the noise. Therefore, we expect that the nature of the noise
in the effective equation of motion for the mound separationmay be very important in determining whether the instability
x is in conflict with existing theorie§45-47 of purely leading to mound formation actually occurs in samples with
noise-driven coarsening of mounds in one-dimensional corflat initial states.
served models in which the occurrence of mounds is due to We have investigated this issue in detail by carrying out
an ES instability. In these studies, it is arglié8,46 that the ~ simulations of a version of model I in which the noise is
shot noise in the deposition process leads to fluctuations gfonserved35]. The equations of motion for the height vari-
order/(t/x) in the variablex (t is the deposition timeif the ~ ables in this model have the form of E@), with the noise
slope of the mounds remains constant in time. Assuming thderms{ 7;(t)} having the properties
two mounds coalesce when this fluctuation becomes of order 5
X, one then obtains the characteristic time for the coalescence (7i(1))=0, (mp(t)n(t"))= —V25i,j5m, , (19
of mounds separated by distancéo scale as?®, leading to
n=1/3. In this description, the effective Langevin equationwhere §;;=1 if i=] and zero otherwise. This model is ex-
[47] for the dynamics ofx contains amultiplicative noise  pected to exhibit kinetic roughening with exponengs
term n(t)/\X(t), where 5(t) is a random, Gaussian, =1/11, @=1/3, andz=11/3 in one dimensiofi35]. Since
S-correlated noise. Our numerical result for the value tdr  the value ofa for this model is less than unity, it exhibits
model Il is clearly inconsistent with this description of the conventional dynamical scaling with the typical value of the
effects of deposition noise. The reason for this disagreemenmtearest-neighbor height difference saturating at a constant
is not completely clear. An important difference betweenvalue at long times. The value of this constant is expected to
model Il and the ones studied in Ref45—47] is that model increase[33] as the strength\ of the nonlinearity is in-
Il exhibits power-law coarsenin¢with a different valuen creased. As discussed in detail in RE33], the nonlinear
=1/3 of the coarsening expongirih the deterministic limit,  instability that leads to mound formation is expected to occur
whereas the ones considered in the earlier studies exhibin the time evolution of such models from a perfectly flat
very slow (logarithmig coarsening in the absence of noise. initial state only if the value ok is sufficiently large to allow
For this reason, the effects of deposition noise in these modhe spontaneous, noise-induced formation of pillars of height
els could be studied without having to take into account anygreater tharh,;,(\,c). So, if the value o\ is sufficiently
deterministicmass flow between mounds that may also leadsmall, then the model with conserved noise, evolving from a
to coarsening[46]. Such deterministic effects are clearly flat initial state, would not exhibit the mounding transition.
present in model Il, and the interplay of these effects withOn the other hand, if the instability is induced in the model
those of the shot noise in the deposition process may chandwy starting the time evolution from a state in which there is
the characteristics of the noise that appears in the effectivat least one pillar with height greater thag,;,, then it is
Langevin equation for the mound separation variabld  expected to evolve to the mounded state if the value isf
detailed analysis of all the processes that may lead to coarsufficiently small to make the mounded state stable. So, the
ening in the deterministic and noisy versions of model Illong-time steady state of the conserved model is expected to

would be required for resolving this issue. exhibit an interesting dependence on the initial stata: i$
sufficiently small(so that pillars with height greater than
VI. MODEL | WITH CONSERVED NOISE hmin @re not spontaneously generated in the time evolution of

the interface from a flat initial stateand the value ofc

As discussed in Sec. IV, the properties of the moundedufficiently small(so that the mounded state is stable in the
phase of model | are determined to a large extent by th@resence of noigethen the steady state would be kinetically
mounded fixed point of the deterministic part of the equa+ough if the initial state is sufficiently smooth, and mounded
tions of motion of the height variables. The presence of noiséf the initial state contains pillars of height greater thay,, .
changes the critical value of the control paramet&lom c;  This “bistability” does not occur for the nonconserved
to c,<c4, but does not affect strongly the properties of themodel | because the nearest-neighbor height difference in
mounded steady state of the systésee, for example, Fig. this model continues to increase with time, so that the insta-
11). Therefore, we expect that the properties of the moundedility always occurs at sufficiently long timg83].
phase would not change drastically if the properties of the Our simulations of the model with conserved noise show
noise are altered. On the other hand, it is well knd@/2]  the bistable behavior discussed above in a large region of the
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FIG. 23. Phase diagram for model | with conserved noise. The
plots show 50% stability linegsee text for a flat initial state
(circles, an initial state with a pillar of heighhy=1000 (dia-
monds, and an initial state identical to the mounded fixed point of

) ) ) ) ) the noiseless equations of motisguares The data were obtained
c-A plane. We find that in this model, the height of a pillar on from 100t=10* runs forL =200 samples.

an otherwise flat interface increases in time if its initial value

h is larger tharhy,;,=20/\ (the dependence &fy,, oncis  face. The probability of reaching a mounded steady state in
weak. This dependence df,,;, on \ is very similar to that  sych runs decreases from unity as the valueisfincreased,
[33] found for model | with nonconserved noise. We alsoand falls below 50% as line 2 is crossed from below. For
find that the typical values of the nearest-neighbor heightarge ), lines 1 and 2 merge together. This is expected: the
difference do not continue to increase with time in thisprobability of occurrence of a mounded steady state should
model. Consequently, i is sufficiently small, pillars with  not depend on how the pillars that initiate the nonlinear in-
height greater tham,;, are not generated, and the systemstapility are generated. The third lingéhe one passing
exhibits conventional kinetic roughening with exponent val-through the squargsepresents 50% probability of transition
ues close to the expected or{@§]. On the other hand, if the to the kinetically rough state from a mounded initial state
time evolution of the same system is started from a state withthe fixed point of the noiseless equations of motion with one
a pillar of height greater thahy,, then it evolves to a mound and one troughThis line reflects the noise-induced
mounded state very similar to the one found in the mode|nstability of the mounded steady state for relatively large
with nonconserved noise if the value ofis sufficiently  values ofc. The differences between lines 2 and 3 are due to
small. The two steady states obtained for the conservefinite-time hysteresis effects similar to those discussed in
model withA =4.0, ¢=0.01 are shown in Fig. 22. The long- Sec. IV in the context of determining the critical valci\)
time state obtained in a run starting from a flat configuratiorof the control parameter for model | with nonconserved
is kinetically rough, whereas the state obtained in a run imgijse.
which the nonlinear instability is initially seeded in the form  The interesting region in the “phase diagram” of Fig. 23
of a single pillar of heighthy=1000 at the central site is s the area enclosed by lines 1 and 2 anddhed line. For
mounded with a well-defined slope, as in model I with non-parameter values in this region, the system exhibits bistable
conserved noise. The difference between the two profilessehavior, as discussed above. This bistability is unexpected
obtained for the same parameter values for two different iniin the sense that in most studies of nonequilibrium surface
tial states, is quite striking. growth, it is implicitly assumed that the long-time steady
Since the steady state in the conserved model depends @fate of the system does not depend on the choice of the
the initial condition, it is not possible to draw a conventionalinitial state. So, it is important to examine whether the de-
phase diagram for this model in tieex plane: the transition pendence of the steady state on the initial condition in the
lines are different for different initial conditions. In Fig. 23, conserved model reflects a very lofigut finite) transition
we have shown three transition lines for this model in thetime from one of the two apparent steady states to the other
c-\ plane. The line drawn through the circléine 1) is  one. We have addressed this question by carrying out long (
obtained from simulations in which the system is startedof the order of 16) simulations of small samples with pa-
from a flat initial state. If\ is small, then the steady state rameter values in the middle of the “bistable region” for flat
reached in such runs is kinetically rough for all valuexof and mounded initial states. We did not find any evidence for
As \ is increased above a “critical valuet;=5.3, pillars  transitions from one steady state to the other one in such
with height greater that,;, are spontaneously generated simulations. Of course, we cannot rule out the possibility that
during the time evolution of the system and it exhibits asuch transitions would occur over much longer time scales.
transition to the mounded state if the valuecdo not very
large. The circles represent the valuex dér which 50% of
the runs show transitions to the mounded state. The line
through the diamonddine 2) corresponds to 50% probabil- To summarize, we have shown from numerical simula-
ity of transition to the mounded state from an initial statetions that a class of 1D surface growth models exhibits
with a pillar of heighthy= 1000 on an otherwise flat inter- mound formation and power-law coarsening of mounds with

FIG. 22. Profiles at time=10° for model | with conserved
noise (=4.0, c=0.02, L=500), for a flat initial configuration
(top panel, and an initial configuration with a pillar of heiglht,
=1000 (bottom panel

VIl. SUMMARY AND DISCUSSIONS
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slope selection as a result of a nonlinear instability that isnound formation found in our study would be operative un-
controlled by the introduction of an infinite series of termsder experimentally realizable conditions. As discussed in
with higher-order gradient nonlinearities. The models considRef.[23], the control parametearin the control functiorf (x)
ered here are discretized versions of a well-known conef model IA is expected to be proportional ifpwherel . is a
tinuum growth equation and an atomistic model originally “nucleation length” qualitatively define22] as the typical
formulated for providing a discrete realization of the growthwidth of a terrace just before another terrace is nucleated at
equation. We have shown that these models exhibit a dythe top of it. The occurrence of the nonlinear instability re-
namical phase transition between a kinetically rough phasgquires a small value of this length which, in the absence of
and a mounded phase as a parameter that measures thetek ES effect, is proportional to the 1/4 power of the diffu-
fectiveness of controlling the instability is varied. We havesion constanf22]. So, the smalk regime could, perhaps, be
defined an order parameter for this first-order transition anéchieved in experiments by decreasing the substrate tempera-
used finite-size scaling to demonstrate how the sample-sizere.
dependence of this order parameter provides a clear distinc- The nonlinear instability found in our 1D models is also
tion between the rough and mounded phases. We have algpoesent [34] in the experimentally interesting two-
mapped out the phase boundary that separates the two phasmensional version of the growth equation of E8). How-
in a two-dimensional parameter space. ever, it is not clear whether this instability, when controlled

We would like to emphasize that the ES mechanism, comin a manner similar to that in our 1D models, would lead to
monly believed to be responsible for mound formation inthe formation of mounds in two dimensions. This question is
surface growth, is not present in our models. Our modelsurrently under investigation. Since the growth equation of
exhibit a nonlinear instability, instead of the linear instability Eq. (3) exhibits conventional dynamic scaling in the kinetic
used conventionally to represent the effects of ES-barriergsoughening regime in two dimensions, the nonlinear instabil-
The mechanism of mound formation in our models is alsaty would not occur in runs with flat initial states if the value
different from a recently discovergd 7,18 one involving of A is small. Therefore, the behavior in two dimensions is
fast edge diffusion, which occurs in two or higher dimen-expected to be similar to that of our 1D model | with con-
sions. The slope selection found in our models is a rare exserved noise: the nature of the long-time steady state may
ample of pattern formation from a nonlinear instability. This depend crucially on initial conditions in a region of param-
is clearly different from slope selection in ES-type models ineter space. Such nonergodic behavior, if found in two dimen-
which the mounds maintain a constant slope during coarsersions, would have interesting implications for the growth of
ing only if the nonequilibrium surface current vanishes at afilms on patterned substrates.
particular value of the slope. The selected slope in such mod- Since the ES instability represents a physical effect that is
els is simply the slope at which the current is zero. Thebelieved to be present in most experimental systems, it is
behavior of our models is more complex: in these modelsinteresting to enquire about the mounding behavior of mod-
the surface current is zero for all values of constant slopegls in which both the nonlinear instability discussed here and
and the selected value of the slope is obtained from a nora linear instability representing the ES effect are simulta-
linear mechanism of pattern selection. neously present. A preliminary numerical studg] of such

Our studies bring out two other unexpected results. Wex model suggests that the long-time behavior would be very
find that the coarsening behavior of an atomistic modekimilar to that found in the present studye., the mounding
(model Il) specifically designed to provide a discrete realiza-behavior would be governed by the nonlinear instabilify
tion of the growth equation that leads to model | is differentthe control parametet is sufficiently small. For relatively
from that of model I: the exponents that describe the powerlarge values oft, the kinetically rough phase found in the
law coarsening are different in the two models. We show thapresent work would be transformed by the linear instability
this difference may arise from a difference in the nature ofto a different mounded phase. There are several ways in
the effective noise that enters the equation of motion for thevhich this(large€) mounded phase arising from the ES lin-
separation between neighboring mounds in the two caseear instability can be distinguished from the one in which the
The second surprising result is that the numerically obtainedonlinear instability is the dominant one. A quantity mea-
long-time behavior of model | with conserved noise in asured in most experiments is the interface width as a function
region of parameter space depends crucially on the initiabf time (number of deposited layerdf the nonlinear insta-
conditions: the system reaches a mounded or kineticallyility is dominant, then the interface widilV is expected to
rough steady state depending on whether or not the initiaéxhibit an initial scaling regimgpower-law growth with
state is sufficiently rough. To our knowledge, this is the firsttime), followed by a rapid increase that breaks dynamic scal-
example of “nonergodic” behavior in nonequilibrium sur- ing, and a subsequent long-time coarsening regime in which
face growth. a power-law growth ofW is recovered. This behavior is il-

The behavior found in our 1D models may be relevant tolustrated in Figs. 1 and 2. The behavior in the lacgegime,
experimental studies of the roughening of steps on a vicinalvhere the linear instability is the dominant one, is expected
surface. As noted earlier, the form of the control function[23] to be different: here the initial growth & would be
f(x) used in model IA is physically reasonable. However,exponential in time, and the sudden increaseWbfat the
since very little is known about the values of the modelonset of the nonlinear instability would be absent. Further,
parameters appropriate for experimentally studied systemshe coarsening behavior would be very different in the two
we are unable to determine whether the mechanism afegimes. The smati-regime dominated by the nonlinear in-
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stability is expected to show slope selection and power-lawvork would remain valid as long as high pillars or deep
coarsening similar to that found in the present work. In con-grooves are formed by the instability—the occurrence of a
trast, the mounds in the largetegime are expected to true divergence is not necessary.
steepen with time and the dependence of the mound size on In the present work, we have shovsee Sec. IYthat the
time may be quite complicatd@3]. continuum equation witti(x) defined in Eq(10) does admit

All the results described in this paper have been obtainedtationary solutions that exhibit all the relevant features of
from numerical studies of models that are discrete in bothstationary solutions of the discretized equation. This result
space and time. It is interesting to enquire whether the trulyrovides additional support to the contention that the behav-
continuum growth equation of E¢3) exhibits similar behav- iors of the continuum and discretized systems are qualita-
ior. This question acquires special significance in view oftively similar. We should, however, mention that these sta-
studieq 33,49 that have shown that discretization may dras-tionary solutions of the continuum equation do not pick out a
tically change the behavior of nonlinear growth equationsselected slope of the interface: profiles similar to those
similar to Eq.(3). Since the interesting behavior found in our shown in Fig. 11 may be obtained for different values of the
discretized models arises from the nonlinear instability founcharameterA in Eq. (14) that determines the slope of the
earlier [32,33, the question that we have to address istriangular mound. Slope selection in the continuum equation
whether a similar instability is present in the truly continuummay occur as a consequence of the requirement of local sta-
growth equation. This question was addressed in some detdiility of such stationary solutions. As mentioned in Sec. IV,
in Ref.[33] where it was shown that the nonlinear instability we have not attempted a linear stability analysis of such nu-
is not an artifact of discretization of time or the use of themerically obtained stationary solutions of the continuum
simple Euler scheme for integrating the growth equation. Irequation because doing such a calculation without discretiz-
the present study, we have found additional evidefse= ing space would be extremely difficult. Further investigation
Sec. Il)) that supports this claim. We should also point outof this question would be useful.
that the atomistic model II, for which the question of inac-  Finally, we would like to emphasize that the discrete mod-
curacies arising from time integration does not arise, exhibitels studied here would continue to be valid models for de-
very similar behavior, suggesting that the behavior found irscribing nonequilibrium surface growth even if the behavior
models | and IA is not an artifact of the time discretization of the truly continuum growth equation of E(B) turns out
used in the numerical integration. to be different from that found here. These models may be

The occurrence of the nonlinear instability does dependooked upon as ones in which continuofiis models | and
on the way space is discretizéice., how the lattice deriva- |A) or discrete(in model Il) height variables defined on a
tives are defined In earlier work[32,33 as well as in the discrete lattice evolve in continuous or discrete time. These
present study, the lattice derivatives are defined in a left-righinodels have all the correct symmetries and conservation
symmetric way. We have found that the instability actuallylaws of the physical problem, and they exhibit, for different
becomes stronger if the number of neighbors used in thgalues of the control parameter both the phenomena of
definition of the lattice derivatives is increased. This resultkinetic roughening and mound formation found in experi-
suggests that the instability is also present in the continuurments. There is no compelling reason to consider the con-
equation. It has been found by Putkaraézel.[50] that the  tinuum equation to be more “correct” or “physical” than
instability does not occur if the lattice derivatives are definedthese models. Epitaxial growth is intrinsically a discrete pro-
in a different way in which either left or right discretization cess at the molecular level and a continuum description is an
of the nonlinear term is used, depending on the sign of the@pproximation that may not be valid in some situations.
local slope of the interface. There is no reason to believe that From a different perspective, the nonequilibrium first-
this definition is “better” or “more physical” than the sym- order phase transition found in our models is interesting,
metric definitions used in our work. The only rigorous resultespecially because it occurs in 1D systems with short-range
we are aware of for the behavior of E®) is derived in Ref. interactions. Such phase transitions have been found earlier
[50] where it is shown that the solutions of the noiselessn several 1D “particle hopping” modelg42]. It would be
equation are bounded for sufficiently smooth initial condi-interesting to explore possible connections between such
tions. This result, however, does not answer the question ahodels and the 1D growth models studied here.
whether the instability occurs in the continuum equation. As
discussed in Ref(33], the nonlinear instability of Eq(4),
signaled by a rapid initial growth of the heigfdepth of
isolated pillars(grooves, may not lead to a true divergence  We thank SERC, 1I1Sc for computational facilities, and S.
of the height variables. The results reported in the preseriDas Sarma and S. S. Ghosh for useful discussions.
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