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Mound formation and coarsening from a nonlinear instability in surface growth
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and Condensed Matter Theory Unit, JNCASR, Bangalore 560064, India
~Received 14 January 2003; published 13 January 2004!

We study spatially discretized versions of a class of one-dimensional, nonequilibrium, conserved growth
equations for both nonconserved and conserved noise using numerical integration. An atomistic version of
these growth equations is also studied using stochastic simulation. The models with nonconserved noise are
found to exhibit mound formation and power-law coarsening with slope selection for a range of values of the
model parameters. Unlike previously proposed models of mound formation, the Ehrlich-Schwoebel step-edge
barrier, usually modeled as a linear instability in growth equations, is absent in our models. Mound formation
in our models occurs due to a nonlinear instability in which the height~depth! of spontaneously generated
pillars ~grooves! increases rapidly if the initial height~depth! is sufficiently large. When this instability is
controlled by the introduction of a nonlinear control function, the system exhibits a first-order dynamical phase
transition from a rough self-affine phase to a mounded one as the value of the parameter that measures the
effectiveness of control is decreased. We define an ‘‘order parameter’’ that may be used to distinguish between
these two phases. In the mounded phase, the system exhibits power-law coarsening of the mounds in which a
selected slope is retained at all times. The coarsening exponents for the spatially discretized continuum equa-
tion and the atomistic model are found to be different. An explanation of this difference is proposed and
verified by simulations. In the spatially discretized growth equation with conserved noise, we find the curious
result that the kinetically rough and mounded phases are both locally stable in a region of parameter space. In
this region, the initial configuration of the system determines its steady-state behavior.

DOI: 10.1103/PhysRevE.69.011601 PACS number~s!: 81.10.Aj, 81.15.Hi, 05.70.Ln
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I. INTRODUCTION

The process of growing films by the deposition of ato
on a substrate is of considerable experimental and theore
interest@1#. While there has been a lot of research on
process of kinetic roughening@1–3# leading to a self-affine
interface profile, there has been much recent experime
@4–12# and theoretical@4,6,13–25# interest in a different
mode of surface growth involving the formation o
‘‘mounds’’ which are pyramidlike or ‘‘wedding-cake-like’
structures. The precise experimental conditions that de
mine whether the growth morphology would be kinetica
rough or dominated by mounds are presently unclear. H
ever, many experiments show the formation of mounds
coarsen~the typical lateral size of the mounds increas!
with time. During this process, the typical slope of the sid
of the pyramidlike mounds may or may not remain consta
If the slope remains constant in time, the system is said
exhibit slope selection. As the mounds coarsen, the surfa
roughness characterized by the root-mean-square widt
the interface increases. Eventually, at very long times,
system is expected to evolve to a single-mound structur
which the mound size is equal to the system size.

There are obvious differences between the structure
kinetically rough and mounded interfaces. In the first ca
the interface is rough in a self-affine way at length sca
shorter than a characteristic lengthj(t) that initially in-
creases with time and eventually saturates at a value com
rable to the sample size. In the second case, the characte
length is the typical mound sizeR(t) whose time depen
dence is qualitatively similar to that ofj(t). However, the
interface in this case looks well ordered at length sca
1063-651X/2004/69~1!/011601~18!/$22.50 69 0116
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shorter thanR(t). Nevertheless, there are certain similariti
between the gross features of these two kinds of surf
growth. First consider the simpler situation in which th
slope of the sides of the mounds remains constant in ti
Simple geometry tells us that if the system evolves to
single-mound structure at long times, then the ‘‘roughn
exponent’’ a must be equal to unity. Also, the heigh
difference correlation functiong(r ) is expected to be propor
tional to r for r !R(t). This is consistent witha51. If the
mound sizeR(t) increases with time as a power law,R(t)
;tn, during coarsening, then the interface widthW, which is
essentially the height of a typical mound, should also
crease with time as a power law with the same exponenn.
Thus, dynamic scaling with ‘‘growth exponent’’b equal ton
and ‘‘dynamical exponent’’z equal to 1/n is recovered. If the
mound slopes(t) increases with time as a power law,s(t)
;tu ~this is known in the literature assteepening!, then one
obtains behavior similar to anomalous dynamical scal
@26# with b5n1u, z51/n.

These similarities between the gross scaling propertie
kinetic roughening with a large value ofa and mound for-
mation with power-law coarsening make it difficult to e
perimentally distinguish between these two modes of surf
growth. This poses a problem in the interpretation of expe
mental results@11,12#. Existing experiments on mound for
mation show a wide variety of behavior. Without going in
the details of individual experiments, we note that some
periments show mound coarsening with a time-independ
‘‘magic’’ slope, whereas other experiments do not show a
slope selection. The detailed morphology of the mounds v
ies substantially from one experiment to another. The
ported values of the coarsening exponentn show a large
©2004 The American Physical Society01-1
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variation in the range 0.15–0.4.
Traditionally, the formation of mounds has been attribu

to the presence of the so-called Ehrlich-Schwoebel~ES! step-
edge barrier@27,28# that hinders the downward motion o
atoms across the edge of a step. This step-edge diffusion
makes it more likely for an atom diffusing on a terrace
attach to an ascending step than to a descending one.
leads to an effective ‘‘uphill’’ surface current@29# that has a
destabilizing effect, leading to the formation of mound
structures as the atoms on upper terraces are prevented b
ES barrier from coming down.

This destabilizing effect is usually represented in co
tinuum growth equations by alinear instability. Such growth
equations usually have a ‘‘conserved’’ form in which th
time derivative of the height is assumed to be equal to
negative of the divergence of a nonequilibrium surface c
rent j . The effects of an ES barrier are modeled in the
equations by a term inj that is proportional to the gradient o
the height~for small values of the gradient! with a positive
proportionality constant. Such a term is manifestly unsta
leading to unlimited exponential growth of thekÞ0 Fourier
components of the height. This instability has to be co
trolled by other nonlinear terms in the growth equation
order to obtain a proper description of the long-time beh
ior. A number of different choices for the nonlinear term
have been reported in the literature@4,6,13,14,22,23#. If the
‘‘ES part’’ of j has one or more stable zeros as a function
the slopes, then the slope of the mounds that form as a res
of the ES instability is expected to stabilize at the cor
sponding value~s! of s at long times. The system would the
exhibit slope selection. If, on the other hand, this part oj
does not have a stable zero, then the mounds are expect
continue to steepen with time. Analytic and numerical stu
ies of such continuum growth equations have produce
wide variety of results, such as power-law coarsening
slope selection withn51/4 @13# or n.0.17 @6# in two di-
mensions, power-law coarsening accompanied by a stee
ing of the mounds@4,14,16#, and a complex coarsening pro
cess@22,23# in which the growth of the mound size becom
extremely slow after a characteristic size is reached.

There are several atomistic, cellular-automaton-type m
els @19–21# that incorporate the effects of an ES diffusio
barrier. Formation and coarsening of mounds in the prese
of an ES barrier have also been studied@22,23# in a one-
dimensional~1D! model with both discrete and continuu
features. We also note that a new mechanism for mound
instability has been discovered recently@17,18#. This insta-
bility, generated by fast diffusion along the edges of mo
atomic steps, leads to the formation of quasiregular sha
mounds in two or higher dimensions. The effects of this
stability have been studied in simulations@17,18,20,24,25#.
The wide variety of results@17–25# obtained from simula-
tions of different models, combined with similar variations
the experimental results, have made it very difficult to ide
tify the microscopic mechanism of mound formation in su
face growth.

In this paper, we show that mound formation, slope se
tion, and power-law coarsening can occur in spatially d
cretized versions of a class of 1D continuum growth eq
01160
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tions and in related discrete atomistic models from
mechanism that is radically different from the ones me
tioned above. Our study is based on the conserved nonli
growth equation proposed by Villain@29# and by Lai and Das
Sarma@30#, and an atomistic version@31# of this equation.
We have studied the behavior of spatially discretized v
sions of the continuum equation by numerical integratio
and the behavior of the atomistic model by stochastic sim
lation. Previous work@32–34# on these systems showed th
they exhibit anonlinearinstability, in which pillars~grooves!
with height ~depth! greater than a critical value continue
grow rapidly. This instability can be controlled@32–34# by
the introduction of an infinite number of higher-order grad
ent nonlinearities. When the parameter that describes the
fectiveness of control is sufficiently large, the controlle
models exhibit@32–34# kinetic roughening, characterized b
usual dynamical scaling with exponent values close to th
expected from dynamical renormalization group calculatio
@30,35,36#. As the value of the control parameter is d
creased, these models exhibit transient multiscaling@32–34#
of height fluctuations. For yet smaller values of the cont
parameter, the rapid growth of pillars or grooves cause
breakdown of dynamical scaling, with the width versus tim
plot showing a sharp upward deviation@33# from the power-
law behavior found at short times~before the onset of the
nonlinear instability!.

We report here the results of a detailed study of the
havior of these models in the regime of small values of
control parameter where conventional kinetic roughening
not observed. We find that in this regime, the interface s
organizes into a sawtoothlike structure with a series of tri
gular, pyramidlike mounds. These mounds coarsen in ti
with larger mounds growing at the expense of smaller on
In this coarsening regime, a power-law dependence of
interface width on time is recovered. The slope of t
mounds remains constant during the coarsening proces
Sec. II, the growth equation and the atomistic model stud
in this work are defined and the numerical methods we h
used to analyze their behavior are described. The basic
nomenology of mound formation and slope selection in th
systems is described in detail in Sec. III. Specifically, w
show that the nonlinear mechanism of mound formation
these systems is ‘‘generic’’ in the sense that the qualita
behavior does not depend on the specific form of the fu
tion used for controlling the instability. In particular, we fin
very similar behavior for two different forms of the contro
function: one used in earlier studies@32–34# of these sys-
tems, and the other one proposed by Politi and Villain@23#
from physical considerations. Since the linear instabil
used conventionally to model the ES mechanism is explic
absent in our models, our work shows that the presenc
step-edge barriers is not essential for mound formation.
slope selection found in our models is a true example
nonlinear pattern formation: since the nonequilibrium s
face current in our models vanishes for all values of cons
slope, the selected value of the slope cannot be predicte
any simple way. This is in contrast to the behavior of E
type models where slope selection occurs only if the surf
current vanishes at a specific value of the slope.
1-2
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
Next, in Sec. IV, we show that the change in the dynam
cal behavior of the system~from kinetic roughening to
mound formation and coarsening! may be described as
first-order nonequilibrium phase transition. Since the ins
bility in our models is a nonlinear one, the flat interface
locally stable in the absence of noise for all values of
model parameters~the strength of the nonlinearity and th
value of the control parameter!. The mounded phase corre
sponds to a different stationary solution of the dynami
equations in the absence of noise. We use a linear stab
analysis to find the ‘‘spinodal boundary’’ in the two
dimensional parameter space across which the mounded
tionary solution becomes locally unstable. We show that
results of this numerical stability analysis can also be
tained from simple analytic arguments. To obtain the ph
boundary in the presence of noise, we first define anorder
parameterthat is zero in the kinetically rough phase a
nonzero in the mounded phase. We combine the numeric
obtained results for this order parameter for different sam
sizes with finite-size scaling to confirm that this order para
eter exhibits the expected behavior in the two phases.
phase boundary that separates the mounded phase from
kinetically rough one is obtained numerically. The pha
boundaries for the continuum model with two different form
of the control function and the atomistic model are found
be qualitatively similar.

The results of a detailed study of the process of coars
ing of the mounds are reported in Sec. V. Surprisingly,
find that the coarsening exponents of the spatially discret
continuum equation and its atomistic version are differe
We propose a possible explanation of this result on the b
of an analysis of the coarsening process in which the pr
lem is mapped to that of a Brownian walker in an attract
force field. In this mapping, the Brownian walk is suppos
to describe the noise-induced random motion of the pea
a mound, and the attractive ‘‘force’’ represents the interact
between neighboring mounds that leads to coarsening.
show that the numerical results obtained for the dynamic
mounds in the atomistic model are consistent with this
planation.

In Sec. VI, we consider the behavior of the~spatially dis-
cretized! continuum growth equation for ‘‘conserved’’ noise
The nonlinear instability found in the nonconserved case
expected to be present in the conserved case also. How
there is an important difference between the two cases.
nonconserved model exhibits anomalous dynamical sca
so that the typical nearest-neighbor height difference con
ues to increase with time, and the instability is alwa
reached@33# at sufficiently long times, even if the startin
configuration is perfectly flat. Since the continuum mod
with conserved noise exhibits@35# usual dynamic scaling
with a,1, the nearest-neighbor height difference is e
pected to saturate at long times if the initial state of
system is flat. Under these circumstances, the occurrenc
the nonlinear instability in runs started from flat states wo
depend on the values of the parameters. Specifically, the
stability may not occur at all if the value of the nonline
coefficient in the growth equation is sufficiently small. At th
same time, the instability can be initiated by choosing
01160
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initial state with sufficiently high~deep! pillars ~grooves!.
Since mound formation in these models is crucially dep
dent on the occurrence of the instability, the arguments ab
suggest that the nature of the long-time steady state rea
in the conserved model may depend on the choice of
initial state. Indeed, we find from simulations that in a regi
of parameter space, the mounded and kinetically rou
phases are both locally stable and the steady-state config
tion is determined by the choice of the initial configuratio
of the interface. These results imply the surprising conc
sion that the long-time, steady-state morphology of a gro
ing interface as well as the dynamics of the process by wh
the steady state is reached may be ‘‘history dependent’’ in
sense that the behavior would depend crucially on the ch
of the initial state. A summary of our findings and a discu
sion of the implications of our results are provided in Se
VII. A summary of the basic results of our study was r
ported in a recent paper@37#.

II. MODELS AND METHODS

Conserved growth equations~deterministic part of the dy-
namics having zero time derivative for thek50 Fourier
mode of the height variable! with nonconserved noise ar
generally used@2# to model nonequilibrium surface growt
in molecular beam epitaxy~MBE!. The conservation is a
consequence of absence of bulk vacancies, overhangs,
desorption~evaporation of atoms from the substrate! under
optimum MBE growth conditions. Thus, integrating over t
whole sample area gives the number of particles depos
This conservation is not strictly valid because of ‘‘sh
noise’’ fluctuations in the beam. The shot noise is mode
by an additive noise termh(r ,t) in the equation of motion of
the interface. The noiseh is generally assumed to b
d-correlated in both space and time:

^h~r ,t !h~r 8,t8!&52Ddd~r2r 8!d~ t2t8!, ~1!

where r is a point on ad-dimensional substrate. Thus,
conserved growth equation may be written in a form

]h

]t
52“• j1h, ~2!

whereh(r ,t) is the height at pointr at time t, and j is the
surface current density. The surface current models the
terministic dynamics at the growth front. As mentioned
Sec. I, the presence of an ES step-edge barrier is modele
continuum equations of the form of Eq.~2! by a term inj
that is proportional to the slopes5“h, with a positive con-
stant of proportionality. This makes the flat surface@h(r )
constant for allr ] linearly unstable. This instability is con
trolled by the introduction of terms involving higher powe
of the local slopes and higher-order spatial derivatives ofh.

We consider the conserved growth equation proposed
Villain @29# and Lai and Das Sarma@30# for describing
MBE-type surface growthin the absence of ES step-edg
barriers. This equation is of the form

]h8~r ,t8!/]t852n¹4h81l8¹2u“h8u21h8~r ,t8!, ~3!
1-3
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whereh8(r ,t8) represents the height variable at the pointr at
time t8. This equation is believed@2# to provide a correct
description of the kinetic roughening behavior observed
MBE-type experiments@12#.

In our study, we numerically integrate the 1D version
Eq. ~3! using a simple Euler scheme@33#. Upon choosing
appropriate units of length and time and discretizing in sp
and time, Eq.~3! is written as@33#

hi~ t1Dt !2hi~ t !5Dt¹̃2@2¹̃2hi~ t !1lu¹̃hi~ t !u2#

1ADt h i~ t !, ~4!

wherehi(t) represents the dimensionless height variable
the lattice pointi at dimensionless timet, ¹̃ and ¹̃2 are
lattice versions of the derivative and Laplacian operato
and h i(t) is a random variable with zero average and va
ance equal to unity. These equations, with an appropr
choice ofDt, are used to numerically follow the time evo
lution of the interface. In most of our studies, we have us
the following definitions for the lattice derivatives:

¹̃hi5~hi 112hi 21!/2,

¹̃2hi5hi 111hi 2122hi . ~5!

We have checked that the use of more accurate, left-r
symmetric definitions of the lattice derivatives, involvin
more neighbors to the left and to the right@33#, leads to
results that are very similar to those obtained from calcu
tions in which these simple definitions are used. We h
also checked that the results obtained in the determin
limit ( h50) by using more sophisticated integration ro
tines @38# closely match those obtained from the Eu
method with sufficiently small values of the integration tim
step.

We have also studied an atomistic version@31# of Eq. ~3!
in which the height variables$hi% are integers. This model i
defined by the following deposition rule. First, a site~say i )
is chosen at random. Then the quantity

Ki~$hj%!52¹̃2hi1lu“̃hi u2 ~6!

is calculated for the sitei and all its nearest neighbors. The
a particle is added to the site that has the smallest valueK
among the sitei and its nearest neighbors. In the case of a
for the smallest value, the sitei is chosen if it is involved in
the tie; otherwise, one of the sites involved in the tie is ch
sen randomly. The number of deposited layers provide
measure of time in this model.

It was found in earlier studies@32–34# that both these
models exhibit anonlinear instability in which isolated
structures~pillars for l.0, grooves forl,0) grow rapidly
if their height~depth! exceeds a critical value. This instabi
ity can be controlled@32–34# by replacingu“̃hi u2 in Eqs.~4!

and ~6! by f (u“̃hi u2) where the nonlinear functionf (x) is
defined as
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c.0 being a control parameter. We call the resulting mod
‘‘model I’’ and ‘‘model II,’’ respectively. This replacemen
amounts to the introduction of an infinite series of high
order nonlinear terms. The time evolution of the height va
ables in model I is, thus, given by

hi~ t1Dt !2hi~ t !5Dt¹̃2@2¹̃2hi~ t !1l~12e2cu“̃hi (t)u
2
!/c#

1ADt h i~ t !. ~8!

In model II, the quantityKi is defined as

Ki~$hj%!52¹̃2hi1l~12e2cu“̃hi u
2
!/c. ~9!

While the function f (x) was introduced in the earlie
work purely for the purpose of controlling the nonlinear i
stability, it turns out that the introduction of this function i
the growth equation is physically meaningful. Politi and V
lain @23# have shown that the nonequilibrium surface curre
that leads to the¹2u“h8u2 term in Eq.~3! should be propor-
tional to “u“h8u2 when u“h8u is small, and should go to
zero whenu“h8u is large. The introduction of the ‘‘contro
function’’ f (u“̃hi u2) satisfies this physical requirement. W
have also carried out studies of a slightly different mod
~which we call ‘‘model IA’’! in which the functionf (x) is
assumed to have a form suggested by Politi and Villain:

f ~x!5
x

11cx
, ~10!

wherec is, as before, a positive control parameter. This fun
tion has the same asymptotic behavior as that of the func
defined in Eq.~7!. As we shall show later, the results ob
tained from calculations in which these two different form
of f (x) are used are qualitatively very similar. In fact, w
expect that the qualitative behavior of these models would
the same for any monotonic functionf (x) that satisfies the
following requirements:~i! f (x) must be proportional tox in
the small-x limit, and ~ii ! it must saturate to a constant valu
asx→`.

We have carried out extensive simulations of both th
models for different system sizes. The results reported h
have been obtained for systems of sizes 40<L<1000. There
is no significant dependence of the results onL. The time
step used in most of our studies of models I and IA isDt
50.01. We have checked that very similar results are
tained for smaller values ofDt. We used both unbounde
~Gaussian! and bounded distributions for the random va
ables h i in our simulations of models I and IA, with no
significant difference in the results. For computational co
venience, a bounded distribution~uniform between1A3 and
2A3) was used in most of our calculations. Unless oth
wise stated, the results described in the following secti
were obtained using periodic boundary conditions. The
fects of using other boundary conditions will be discussed
the following section.
1-4
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III. MOUND FORMATION AND SLOPE SELECTION

It has been demonstrated earlier@32,33# that if the control
parameterc is sufficiently large, then the nonlinear instabili
is completely suppressed and the models exhibit the u
dynamical scaling behavior with the expected@30# exponent
values, b.1/3, z.3, and a5bz.1. This behavior for
model I is illustrated by the solid line in Fig. 1, which show
a plot of the widthW as a function of timet for parameter
valuesl54.0 andc50.06. As the value ofc is decreased
with l held constant, the instability makes its appearan
the heighth0 of an isolated pillar~for l.0) increases in
time if hmin(l,c),h0,hmax(l,c). The value ofhmin is
nearly independent ofc, and is given byhmin(l,c).A/l
with A.20 for model I. The value ofhmax increases asc is
decreased@33#. If c is sufficiently large,hmax is small and the
instability does not affect the scaling behavior of glob
quantities such asW, although transient multiscaling a
length scales shorter than the correlation lengthj;t1/z may
be found @32,33# if c is not very large. Asc is decreased
further, hmax becomes large, and when isolated pillars w
h0.hmin are created at an initially flat interface throug
fluctuations, the rapid growth of such pillars to heighthmax
leads to a sharp upward departure from the power-law s
ing of W with time t. The time at which this departure occu
varies from run to run. This behavior for model I withl
54.0 andc50.02 is shown by the dash-dotted line in Fig.

This instability leads to the formation of a large numb
of randomly distributed pillars of height close tohmax. As
the system evolves in time, the interface self-organizes
form triangular mounds of a fixed slope near these pilla
These mounds then coarsen in time, with large mou
growing larger at the expense of small ones. In this coars
ing regime, a power-law growth ofW in time is recovered.
The slope of the sides of the triangular mounds remains c
stant during this process. Finally, the system reaches a st
state with one peak and one trough~if periodic boundary
conditions are used! and remains in this state for longe

FIG. 1. Double-log plots of the interface widthW as a function
of time t for model I with l54.0, c50.02 ~dash-dotted line!, and
for l54.0, c50.06 ~full line!. These data are forL5500 samples,
averaged over 40 independent runs starting from flat initial sta
Plots have been shifted vertically for clarity. The values ofW for the
two different values ofc are close to each other at relatively sho
times ~before the onset of the nonlinear instability forc50.02).
The interface width forc50.02 at long times~after the occurrence
of the instability! is much larger than that forc50.06.
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times. The interface profiles in the kinetically rough pha
~obtained for relatively large values ofc) and the mounded
phase~obtained for smallc) are qualitatively different. This
difference is illustrated in Fig. 2 that shows typical interfa
profiles in the two different phases. This figure also show
typical interface profile for model IA in the mounded regim
illustrating the fact that the precise choice of the cont
function f (x) is not crucial for the formation of mounds. Th
evolution of the interface structure in the mounded regime
model I is illustrated in Fig. 3 which shows the interfac
profiles obtained in a typicalL5200 run starting from a flat
initial state at three different times:t5200 ~before the onset
of the instability!, t54000 ~after the onset of the instability
in the coarsening regime!, andt5128 000~in the final steady
state!. This figure also shows the steady-state interface p
file of a L5500 sample with the same parameters, to illu
trate that the results do not depend on the sample size.

Very similar behavior is found for model II. Since th
heights in this atomistic model can increase only by discr
amounts in each unit of discrete time, the increase ofW at
the onset of the instability is less rapid here than in the c
tinuum models I and IA. Nevertheless, the occurrence of
instability for small values ofc shows up as a sharp upwar
deviation of theW versust plot from the initial power-law
behavior withb.1/3. This is illustrated by the dash-dotte

s.

FIG. 2. Configuration snapshots att5105, for model I with l
54.0, c50.06 ~top panel!, model I with l54.0, c50.02 ~middle
panel!, and model IA withl54.0, andc50.01 ~bottom panel!.

FIG. 3. The interface profile at three different times (t5200,
4000, and 128 000! in a run starting from a flat state for aL5200
sample of model I withl54.0 andc50.02. The dashed line show
the profile for anL5500 sample with the same parameters at
51.283107, with both axes scaled by 2.5.
1-5
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B. CHAKRABARTI AND C. DASGUPTA PHYSICAL REVIEW E69, 011601 ~2004!
line in Fig. 4, obtained from simulations of model II wit
l52.0, c50.005. This behavior is to be contrasted with th
for l52.0, c50.015, shown by the full line in Fig. 4, wher
the nonlinear instability is absent. The difference between
surface morphologies in the two regimes of model II is illu
trated in Fig. 5. The kinetically rough, self-affine morpho
ogy obtained for c50.02 is clearly different from the
mounded profile found forc50.005. The time evolution o
the interface in the mounded regime of this model is illu
trated in Fig. 6. The general behavior is clearly similar to t
found for models I and IA. This figure also shows a prope
scaled plot of the interface profile of aL5500 sample with
the same parameters at a time in the coarsening regime.
clear from this plot that the nature of the interface and
value of the selected slope do not depend on the sample

The occurrence of a peak and a symmetrically pla
trough in the steady-state profiles shown in Figs. 3 and 6
consequence of using periodic boundary conditions. The
terministic part of the growth equation of Eq.~8! strictly
conserves the average height if periodic boundary condit
are used. So, the average height remains very close to ze
the initial state is flat, as in most of our simulations. T
steady-state profile must have at least one peak and
trough in order to satisfy this requirement. Also, it is easy

FIG. 4. Double-log plots of the interface widthW as a function
of time t for model II with l52.0, c50.005~dash-dotted line!, and
for l52.0, c50.015~full line!. These data are forL5500 samples,
averaged over 40 independent runs starting from flat states. P
have been shifted vertically for clarity. As in Fig. 1, the values ofW
in the two plots are similar at relatively short times~before the onset
of the nonlinear instability forc50.005), and the interface width
after the occurrence of the instability forc50.005 is much larger
than that forc50.015.

FIG. 5. Configuration snapshots att5106 for model II with l
52.0, c50.02 ~top panel!, andl52.0, c50.005~bottom panel!.
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show that if the slopes of the ‘‘uphill’’ and ‘‘downhill’’ parts
of the steady-state profile are the same in magnitude~this is
true for our models!, then the two extrema must be separat
by .L/2. Therefore, it is clear that the steady state obtain
in simulations with periodic boundary conditions must ha
a peak and a symmetrically placed trough separated by
tance.L/2.

To check whether the basic phenomenology descri
above depends on the choice of the boundary condition,
have carried out test simulations using two other bound
conditions: ‘‘fixed’’ boundary condition, in which the heigh
variable to the left ofi 51 and to the right ofi 5L are pinned
to zero at all times, and ‘‘zero-flux’’ boundary condition wit
vanishing first and third derivatives of the height at the tw
ends of the sample. For these boundary conditions, the
terministic part of the growth equation does not strictly co
serve the average height. As a result, the symmetry betw
the mound and the trough, found in the long-time stea
state obtained for periodic boundary condition, is not pres
if one of the other boundary conditions is used. In particu
it is possible to stabilize a single mound or a single trough
the steady state for the other boundary conditions. Since
heights at the two ends must be the same for fixed bound
condition, the two extrema in a configuration with on
mound and one trough must be separated by.L/2, as shown
in Fig. 7. The two extrema would not be separated by.L/2
for the zero-flux boundary condition. These effects of boun
ary conditions are illustrated in Fig. 7 which shows profil
in the mounded regime obtained for the three differe
boundary conditions mentioned above. It is clear from
results shown in this figure that the basic phenomenolo
i.e., the formation and coarsening of mounds and slope
lection, is not affected by the choice of boundary conditio
In particular, the values of the selected slope and the hei
of the pillars at the top of a mound and the bottom of
trough remain unchanged when boundary conditions o
than periodic are used.

The selection of a ‘‘magic slope’’ during the coarsenin
process is clearly seen in the plots of Figs. 3 and 6. M
quantitatively, the probability distribution of the magnitud
of the nearest-neighbor height differencessi[uhi 112hi u is
found to exhibit a pronounced peak at the selected valu

ts

FIG. 6. The interface profile at three times (t5102, 106, and
33106) in a run starting from a flat state for aL5200 sample of
model II with l52.0 and c50.005. The profile of anL5500
sample with the same parameters att533106, with both axes
scaled by 2.5, is shown by the dashed line.
1-6
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
the slope, and the position of this peak does not change
ing the coarsening process. Figure 8 shows a compariso
the distribution of the magnitude of the nearest-neigh
height difference for model I in the mounded and kinetica
rough phases. A bimodal distribution is seen for the moun
phase, the two peaks corresponding to the values of the
lected slope and the height of the pillars at the top and b
tom of the pyramids. The kinetically rough phase, on
other hand, exhibits a distribution peaked at zero. Figur
shows the values of the selected slope at different time
the coarsening regime of model I. The constancy of the sl
is clearly seen in this plot. All these features remain true
the discrete model. Plots of the distributionP(s) at two dif-
ferent times in the coarsening regime of model II are sho
in Fig. 10. The peak position shows a small shift in t
positive direction ast is increased, but this shift is sma
compared to the width of the distributions, indicating ne
constancy of the selected slope. The value of the sele
slope depends on the parametersl andc. This is discussed in
the following section.

IV. DYNAMICAL PHASE TRANSITION

The instability that leads to mound formation in our mo
els is a nonlinear one, so that the perfectly flat state of

FIG. 7. Height profiles for model I (l54.0, c50.02) at time
t51.283107 for periodic boundary conditions~full line!, fixed
boundary conditions~dashed line!, and zero-flux boundary condi
tions ~dash-dotted line!.

FIG. 8. Distribution of the magnitude of the nearest-neighb
height differences for model I withl54.0 andc50.02~left panel!,
showing the bimodal nature of the distribution, characteristic o
mounded phase with slope selection. The distribution forl54.0,
c50.05 ~right panel! does not show this behavior. These distrib
tions are measured in the steady state (t5128 000) for L5200
samples.
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interface is a locally stable steady-state solution of the ze
noise growth equation for all parameter values. When
instability is absent~e.g., for large values of the control pa
rameter c), this ‘‘fixed-point’’ solution of the noise-free
equation is transformed to the kinetically rough steady s
in the presence of noise. The mounded steady state obta
for small values ofc must correspond to a different fixe
point of the zero-noise growth equation. Such nontriv
fixed-point solutions may be obtained from the followin
simple calculation.

The profile near the top (i 5 i 0) of a triangular mound
may be approximated ashi 0

5x01x1 , hi 01 j5x02(u j
u21)x2, wherex1 is the height of the pillar at the top of th
mound andx2 is the selected slope. This profile would n
change under the dynamics of Eq.~8! with no noise if the
following conditions are satisfied:

¹̃2hi 0
2l~12e2cu“̃hi 0

u2!/c

5¹̃2hi 0612l~12e2cu“̃hi 061u2!/c

5¹̃2hi 0622l~12e2cu“̃hi 062u2!/c. ~11!

These conditions lead to the following pair of nonline
equations for the variablesx1 andx2 used to parametrize th
profile near the top of a mound:

2x12l@12e2cx2
2
#/c50,

3x12x22l@12e2c(x11x2)2/4#/c50. ~12!

r

a

FIG. 9. Average slope of the mounds as a function of time
model I in the mounded phase (l54.0, c50.02) during the coars-
ening process,t58000 to t51.283105. The data are forL5500
samples averaged over 40 runs.

FIG. 10. Distribution of the magnitude of the nearest-neighb
height differences for model II with l52.0 andc50.005, at two
different times,t5106 ~full line! and t5107 ~dashed line!.
1-7
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B. CHAKRABARTI AND C. DASGUPTA PHYSICAL REVIEW E69, 011601 ~2004!
These equations admit a nontrivial solution for sufficien
smallc, and the resulting values ofx1 andx2 are found to be
quite close to the results obtained from numerical integ
tion. A similar analysis for the profile near the bottom of
trough @this amounts to replacingx2 by 2x2 in Eq. ~12!#
yields slightly different values forx1 andx2. The full stable
profile ~a fixed point of the dynamics without noise! with one
peak and one trough may be obtained numerically by ca
lating the values of$hi% for which gi , the term multiplying
Dt on the right-hand side of Eq.~8!, is zero for all i. The
fixed-point values of$hi% satisfy the following equations:

gi5¹̃2@2¹̃2hi1l~12e2cu“̃hi u
2
!/c#50 for all i .

~13!

A numerical solution of these coupled nonlinear equatio
shows that the small mismatch between the values ofx2 near
the top and the bottom is accommodated by creating a
ripples near the top. The numerically obtained fixed-po
profile for aL5500 system withl54.0, c50.02 is shown
in Fig. 11, along with a typical steady-state profile for t
same system. The two profiles are found to be nearly ide
cal, indicating that the mounded steady state in the prese
of noise corresponds to this fixed-point solution of the noi
less discretized growth equation.

Fixed-point solutions of the continuum equation, Eq.~3!,
with n51 andu“hu2 replaced byf (u“hu2) where f (x) has
the form shown in Eq.~10! may also be obtained by a sem
analytical approach following Raczet al. @39#. We consider
stationary solutions of the continuum equation that sat
the following first-order differential equation with appropr
ate boundary conditions:

2
ds

dx
1l

s2

11cs2
5A, ~14!

wheres(x)5dh(x)/dx is the local slope of the interface an
A is a constant that must be positive in order to obtain
solution that resembles a triangular mound. At large d
tances from the peak of the mound, the slopes would be

FIG. 11. Fixed-point profile for anL5500 sample of model I
with l54.0 andc50.02 ~full line!, compared with a steady-stat
profile ~dash-dotted line! for the same parameter values. The dash
line shows a steady-state profile of aL5200 sample of model IA
with l54.0, c50.01 ~both axes scaled by 2.5!, and the dotted line
shows an invariant solution of the corresponding continuum eq
tion.
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constant, so thatds(x)/dx would vanish, whereas the secon
term would give a positive contribution ifl is positive. At
the peak of the profile, the second term would be zero
causes is zero, butds(x)/dx would be negative, making the
left-hand side of Eq.~14! positive. While a closed-form so
lution of this differential equation cannot be obtained, t
value of s(x) at any pointx may be calculated with any
desired degree of accuracy by numerically solving a sim
algebraic equation. The height profile is then obtained
integratings(x) with appropriate boundary conditions. In ou
calculation, we used the procedure of Raczet al. @39# to take
into account periodic boundary conditions. In Fig. 11, w
have shown a typical steady-state profile of aL5200 sample
of model IA with l54.0 andc50.01, and a fixed-point
solution of the corresponding continuum equation. The va
of the constantA in Eq. ~14! was chosen to yield the sam
slope as that of the steady-state profile of the discrete mo
These results show that the steady-state properties for
two forms of f (x) are very similar, and the continuum equ
tion admits stationary solutions that are very similar to tho
of the discretized models.

The local stability of the mounded fixed point may b
determined from a calculation of the eigenvalues of the s
bility matrix, Mi j 5]gi /]hj , evaluated at the fixed point. W
find that the largest eigenvalue of this matrix~disregarding
the trivial zero eigenvalue associated with a uniform d
placement of the interface,hi→hi1d for all i ) crosses zero
at c5c1(l) ~see Fig. 12!, signaling an instability of the
mounded profile. The structure of Eq.~8! implies that
c1(l)}l2. Thus, for 0,c,c1(l), the dynamics of Eq.~8!
without noise admits two locally stable invariant profiles:
trivial, flat profile with hi the same for alli, and a nontrivial
one with one mound and one trough. Depending on the
tial state, the noiseless dynamics takes the system to on
these two fixed points. For example, an initial state with o
pillar on a flat background is driven by the noiseless dyna
ics to the flat fixed point if the height of the pillar is smalle
than a critical value, and to the mounded one otherwise.

The ‘‘relevant’’ perturbation that makes the mound
fixed point unstable atc5c1 is a uniform vertical relative
displacement of the segment of the interface between
peak and the trough of the fixed-point profile. This can

d

a-

FIG. 12. The dependence ofk, the closest-to-zero eigenvalue o
the stability matrix for the mounded fixed point of model I withl
54.0, L5500, on the control parameterc. The inset shows the
right eigenvectorr i corresponding to this eigenvalue near the po
wherek crosses zero.
1-8
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
seen by numerically evaluating the right eigenvector co
sponding to the eigenvalue of the stability matrix that cros
zero atc5c1. This is demonstrated in the inset of Fig. 1
Also, examination of the time evolution of the mound
structure for values ofc slightly higher thanc1 shows that
the instability of the structure first appears at the bottom
the trough. Taking cue from these observations, the valuc1
can be obtained from a simple calculation. We consider
profile near the bottom of a trough ati 5 i 0. As discussed
above, the profile neari 0 may be parametrized ashi 0

5x0

1x1 , hi 01 j5x01(u j u21)x2, and the values ofx1 and x2

may be obtained by solving a pair of nonlinear equatio
Eq. ~12! with x2 replaced by2x2. We now consider a per
turbation of this profile, in which the heights on one side
i 0 are all increased by a small amountd @i.e., hi 01 j5x0

1( j 21)x21d, hi 02 j5x01( j 21)x2 with j .0], and use

Eq. ~8! to calculate howd changes with time, assuming it
value to be small. The requirement thatd must decrease with
time for the fixed-point structure to be locally stable leads
the following equation for the value ofc at which the struc-
ture becomes unstable:

l

2
~x12x2!e2c(x12x2)2/451. ~15!

By substituting the numerically obtained values ofx1 andx2
in this equation, the critical valuec1(l) of the parameterc is
obtained as a function ofl. The values obtained this way ar
in good agreement with those obtained from our full nume
cal calculation of the eigenvalues of the stability matrix. T
‘‘spinodal’’ lines ~i.e., the lines in thec-l plane beyond
which the mounded fixed point is unstable! for models I and
IA are shown in Fig. 13. Both these lines have the expec
form, c1(l)}l2. It would be interesting to carry out a sim
lar stability analysis for the mounded stationary profile~see
Fig. 11! of the continuum equation corresponding to mod
IA. Such a calculation would have to be performedwithout
discretizing spaceif we want to address the question
whether the behavior of the truly continuum equation is sim
lar to that of the discretized versions considered here.
have not succeeded in carrying out such a calculation: s

FIG. 13. Critical values of the control parameterc as functions
of l: c1 of model I ~circles!, c2 of model I ~triangles!, c2 of model
II ~diamonds!, andc1 of model IA ~squares!. Inset: the probabilities
P1 ~circles! andP2 ~triangles! defined in text, as functions ofc for
model I with l54.0, L5200.
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the mounded stationary profiles for the continuum equat
are obtained from a numerical calculation, it would be e
tremely difficult, if not impossible, to carry out a linear st
bility analysis for such stationary solutions without discret
ing space.

In the presence of the noise, the perfectly flat fixed po
transforms to the kinetically rough steady state, and the n
trivial fixed point evolves to the mounded steady state sho
in Fig. 11. A dynamical phase transition atc5c2(l)
,c1(l) separates these two kinds of steady states. To ca
latec2(l), we start a system at the mounded fixed point a
follow its evolution according to Eq.~8! for a long time
~typically t5104) to check whether it reaches a kinetical
rough steady state. By repeating this procedure many tim
the probabilityP1(l,c) of a transition to a kinetically rough
state is obtained. For fixedl, P1 increases rapidly from 0 to
1 asc is increased above a critical value. Typical results
P1 as a function ofc for model I with l54.0 are shown in
the inset of Fig. 13. The value ofc at which P150.5 pro-
vides an estimate ofc2. Another estimate is obtained from
similar calculation ofP2(l,c), the probability that a flat ini-
tial state evolves to a mounded steady state. As expectedP2
increases sharply from 0 to 1 asc is decreased~see inset of
Fig. 13!, and the value ofc at which this probability is 0.5 is
slightly lower than the value at whichP150.5. This differ-
ence reflects finite-time hysteresis effects. The value ofc2 is
taken to be the average of these two estimates, and the
ference between the two estimates provides a measure o
uncertainty in the determination ofc2. The phase boundary
obtained this way is shown in Fig. 13, along with the resu
for c2(l) obtained for the discrete model II from a simila
analysis.

The general behavior found for all the models as the
rametersl and c are varied is qualitatively very similar to
that in equilibrium first-order phase transitions of two- a
three-dimensional systems as the temperature and othe
rameters, such as the magnetic field in spin systems, are
ied. To take a standard example of an equilibrium first-or
transition, we consider a system described by a Ginzbu
Landau free energy functional@40# with a cubic term. For
temperatures in the rangeT0,T,Ts whereT0 and Ts are,
respectively, the lower and upper spinodal temperatures@40#,
this free energy has two local minima representing the t
phases of the system. A first-order equilibrium phase tra
tion occurs atT5Tc , with T0,Tc,Ts .

Now consider the dynamics of this system according
the time-dependent Ginzburg-Landau equation@40#. In the
absence of noise, the dynamics exhibits two locally sta
fixed points for T0,T,Ts , corresponding to the two
minima of the free energy. This is analogous to the two
cally stable fixed points of our nonequilibrium dynamic
systems forc,c1(l). If noise is present, the system selec
one of the phases corresponding to the two fixed points
the noiseless dynamics, except atTc where both phases co
exist. The local stability of the mean-field ordered and dis
dered states in the temperature interval betweenT0 andTs is
manifested in the dynamics as finite-time hysteresis effe
The behavior we find for our nonequilibrium dynamic
models is qualitatively similar: the system selects the ste
1-9
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B. CHAKRABARTI AND C. DASGUPTA PHYSICAL REVIEW E69, 011601 ~2004!
state corresponding to the mounded~‘‘ordered’’! fixed point
of the noiseless dynamics as the control parameterc ~analo-
gous to the temperatureT of the equilibrium system! is de-
creased belowc2 which is smaller than the spinodal valu
c1. If this analogy with equilibrium first-order transition i
correct, then our models should show hysteresis and coe
ence of kinetically rough and mounded morphologies
values ofc near c2(l). As mentioned above, we do fin
hysteresis~see inset of Fig. 13! in finite-time simulations
with values ofc nearc2. Evidence for two-phase coexistenc
is presented in Fig. 14, where a snapshot of the interf
profile for a L5500 sample of model I withl54.0, c
50.42 is shown. This value ofc is very close to the critica
value c2 for l54.0 ~see inset of Fig. 13!. This plot clearly
illustrates the simultaneous presence of mounded and ro
morphologies in the interface profile.

The results described above suggest that our growth m
els exhibit a first-order dynamical phase transitionat c
5c2(l). To make this conclusion more concrete, we need
define anorder parameterthat is zero in the kinetically
rough phase, and jumps to a nonzero value as the sy
undergoes a transition to the mounded phase atc5c2. The
identification of such an order parameter would also be u
ful for distinguishing between these two different kinds
growth in experiments—as mentioned in the Introduction
is difficult to experimentally differentiate between kinet
roughening and mound formation with coarsening from m
surements of the usual bulk properties of the interface
clear distinction between the two morphologies may be
tained from measurements of the average number of extr
of the height profile@41#. The steady-state profile in th
mound-formation regime exhibits two extrema forall values
of the system sizeL. In contrast, the number of extrema
the steady state in the kinetic roughening regime increa
with L as a power law@41#—we find that for values ofc for
which the system is kinetically rough, e.g., forl54.0, c
50.05 for model I, the average number of extrema in
steady state is proportional toLd with d.0.83. This obser-
vation allows us to define an ‘‘order parameter’’ that is ze
in the large-c, kinetic roughening regime and finite in th
small-c, mound-formation regime. Lets i be an Ising-like
variable, equal to the sign of the slope of the interface at
i. An extremum in the height profile then corresponds to
‘‘domain wall’’ in the configuration of the$s i% variables.

FIG. 14. Two-phase coexistence near the phase transitio
model I. The plot shows an interface profile of aL5500 sample
with l54.0, c50.42.
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Since there are two domain walls separated by;L/2 in the
steady state in the mound-formation regime, the quantity

m5
1

L U K (
j 51

L

s je
2p i j /LL U, ~16!

where i 5A21 and ^•••& represents a time average in th
steady state, would be finite in theL→` limit. On the other
hand,m would go to zero for largeL in the kinetically rough
regime because the number of domains in the steady-s
profile would increase withL. We find numerically that in the
kinetically rough phase,m;L2g with g.0.2. The finite-
size scaling data for the order parameterm for models I and
II for both faceted and kinetically rough phases are shown
Fig. 15. It is seen thatmL varies linearly with the system siz
L in the mounded phase, whereasmL;L12g with g.0.2 for
model I andg.0.15 for model II in the kinetically rough
phase. So, in theL→` limit, the order parameter would
jump from zero to a value close to unity asc is decreased
belowc2(l). This is exactly the behavior expected at a fir
order phase transition.

The occurrence of a first-order phase transition in our
models with short-range interactions may appe
surprising—it is well known@40# that 1D systems with short
range interactions do not exhibit any equilibrium thermod
namic transition at a nonzero temperature. The situation
however, different for nonequilibrium phase transitions:
contrast to equilibrium systems, a first-order phase transi
may occur in one-dimensional nonequilibrium systems w
short-range interactions. Several such transitions have b
well documented in the literature@42#. So, there is no reaso
to a priori rule out the occurrence of a true first-order tra
sition in our 1D nonequilibrium systems. As discuss
above, our numerical results strongly suggest the existe
of a true phase transition. However, since all our results
based on finite-time simulations of finite-size systems,
cannot claim to have established rigorously the occurrenc

in
FIG. 15. Finite-size scaling for the order parameterm. The left

panel shows double-log plots ofmL as a function of the sample siz
L for model I in the mounded phase (l54.0, c50.02, circles! with
slope 1.0060.01 and in the kinetically rough phase (l54.0, c
50.05, diamonds! with slope 0.8160.02. The right panel shows
similar plots for model II in the mounded phase (l52.0, c
50.005, circles! with slope 1.0060.01 and in the kinetically rough
phase (l52.0, c50.015, diamonds! 0.8860.02. The straight lines
are the best power-law fits to the data.
1-10
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
a true phase transition in our models. The crucial questio
this context is whether the order parameterm would be non-
zero in the mounded phase in theL→` limit if the time
average in Eq.~16! is performed over arbitrarily long times
Since the steady-state profile in this phase has a si
mound and a single trough~this is clear from our simula-
tions!, the only way in whichm can go to zero is through
strong ‘‘phase fluctuations’’ corresponding to lateral shifts
the positions of the peak and the trough. We do not find
evidence for such strong phase fluctuations. We have ca
lated the time autocorrelation function of the phase of
order parameter for small samples over times of the orde
107 and found that it remains nearly constant at a value cl
to unity over the entire range of time. So, if such pha
fluctuation eventually makes the order parameter zero fo
values ofc, then this must happen over astronomically lo
times. Our finite-time simulations cannot, of course, rule
this possibility.

V. COARSENING OF MOUNDS

During the late-stage evolution of the interface, t
mounds coarsen with time, increasing the typical size of
triangular pyramidal structures. The process of coarsen
occurs by larger mounds growing larger at the expense of
smaller ones while always retaining their magic slope. Sn

FIG. 16. Snapshots (t523104, 63104, 105, 1.43105, and
1.283107) of the profile of anL5500 sample of model I~profiles
at different times have been shifted in the vertical direction
clarity! with l54.0, c50.02 in the coarsening regime.

FIG. 17. Snapshots (t51100 000, 1200 000, 1250 000
1301 000, 1450 000, 1606 000, 1660 000, 1670 000, 1680 0
1700 000) of the profile of aL5500 sample of model II~profiles at
different times have been shifted in the vertical direction for clari!
with l52.0, c50.005 in the coarsening regime.
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shots of the system in the coarsening regime are show
Figs. 16 and 17 for model I and model II, respectively. T
constancy of the slope during the coarsening proces
clearly seen in these figures. As discussed in the Introd
tion, the constancy of the slope implies that if the typic
lateral size of a mound increases in time as a power law w
exponentn @R(t)}tn#, then the width of the interface would
also increase in time as a power law with the same expon
@W(t)}tb with b5n]. Therefore, the value of the coarse
ing exponentn may be obtained by measuring the widthW
as a function of time in the coarsening regime. In Fig. 18,
show a plot of the width as a function of time for model
with l54.0, c50.02. It is clear from the plot that the tim
dependence of the width is well described by a power l
with b5n50.3460.01. A similar plot for the discrete mode
II with l52.0, c50.005, shown in Fig. 19, also shows
power-law growth of the width in the long-time regime, b
the value of the coarsening exponent obtained from a pow
law fit to the data isb5n50.5060.01, which is clearly
different for the value obtained for model I. This is a surpr
ing result: model II was originally defined@31# with the spe-
cific purpose of obtaining an atomistic realization of the co
tinuum growth equation of Eq.~3!, and earlier studies@31–
33# have shown that the dynamical scaling behavior of t
model in the kinetic roughening regime is the same as tha
model I. Also, we have found in the present study that
dynamical phase transition in this model has the same c
acter as that in model I. So, the difference in the values of
coarsening exponents for these two models is unexpected
noted earlier, there is some evidence suggesting that the
cal slope of the mounds in model II increases very slow
with time ~see Fig. 10!. However, this ‘‘steepening,’’ if it
actually occurs, is too slow to account for the large diffe
ence between the values of the coarsening exponents
models I and II.

In order to understand these numerical results, we fi
address the question of why the mounds coarsen with ti
This problem has certain similarities with domain growth

r

0,

FIG. 18. Double-log plots of the interface widthW as a function
of time t for model I with l54.0 andc50.02, with noise~dash-
dotted line!, and without noise~dotted line! averaged over 40 runs
for L51000 samples. The dashed line showsW vs t data for model
IA with l54.0, c50.01, averaged over 60 runs forL5500
samples. The solid line represents power-law behavior with ex
nent n51/3. Inset: finite-size scaling data for the inverse of t
closest-to-zero eigenvalue of the stability matrix for the mound
fixed point of model I withl54.0, c50.02.
1-11
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B. CHAKRABARTI AND C. DASGUPTA PHYSICAL REVIEW E69, 011601 ~2004!
spin systems@43#. Using the Ising variables$s i% defined in
the preceding section, each height profile can be mapped
configuration of Ising spins. The coarsening of mounds th
corresponds to a growth of the typical size of domains
these Ising spins. However, arguments based on cons
ations of the free energy~at finite temperatures! or energy~at
zero temperature!, which are often used in studies of doma
growth, do not apply to our nonequilibrium growth mode
The reason for the coarsening of mounds in our models m
be sought in the relative stability of different structures un
the assumed dynamics and the effects of noise.

We have found numerically that fixed points of Eq.~8!
with two mounds and troughs are unstable. These res
suggest that the coarsening of the mounds in model I refl
the instability of structures with multiple mounds an
troughs. If this is true, then coarsening of mounds should
observed in this model even when the noise term in Eq.~8! is
absent. To check this, we follow numerically the time evo
tion ~in the presence of noise! of an initial configuration with
a pillar of heighth0.hmin(l,c) at one site of an otherwis
flat interface until the instability caused by the presence
the pillar is well developed. The profiles obtained for diffe
ent realizations of the noise used in the initial time evolut
are then used as initial configurations for coarsening r
without noise. The dotted line in Fig. 18 shows the wid
versus time data obtained from this calculation. The coars
ing exponent in the absence of noise is found to be the s
(n.1/3) as that of the noisy system, indicating that t
coarsening in this model is driven by processes associ
with the deterministic part of the growth equation.

The different steps in the coalescence of two mounds
illustrated in the snapshots of interface profiles shown in F
17 where one can see how the two mounds near the ce
come together to form a single one as time progresses. F
the separation between the peaks of the mounds decre
with time. When this distance becomes sufficiently small,
‘‘V-shaped’’ segment that separates the peaks of the mou
‘‘melts’’ to form a rough region with many spikes. This re
gion of the interface then self-organizes to become the
part of a mound. The absolute value of the closest-to-z
eigenvalue of the stability matrix for the single-mound

FIG. 19. Double-log plot of the interface widthW as a function
of time t for model II with l52.0 andc50.005~solid line! for L
51000 samples averaged over 40 runs. The dash-dotted and d
lines represent power-law behavior with exponentn51/3 andn
51/2, respectively.
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fixed point provides an estimate of the time scale over wh
configurations close to the fixed point evolve to the fix
point itself. In the inset of Fig. 18, we have shown the d
pendence of the magnitudekm of the closest-to-zero eigen
value forl54.0, c50.02 on the system sizeL. The eigen-
value scales with the system size asL23, indicating that the
time scale for the decay of fluctuations with length scaleL is
proportional toL3. This is consistent with the observed valu
of the coarsening exponent,n.1/3, which indicates that the
time scalet(x) for the coalescence of mounds separated
distancex is proportional tox1/n;x3.

Coarsening data for model IA are shown in Fig. 18. In th
model, there is a long-time interval between the onset of
instability and the beginning of power-law coarsening. D
ing this time interval, the interface segments near the
pillars formed at the instability organize themselves into
angular mounds. This process produces a plateau in
width versus time plot. Eventually, however, power-la
coarsening withn.1/3 is recovered, as shown by the dash
line in Fig. 18.

Going back to the discrete model II, we first examined
coarsening dynamics in the absence of noise. The stocha
ity in this model arises from two sources: first, the rando
ness associated with the selection of the deposition sitei @the
quantityKi($hj%) defined in Eq.~9! is calculated at this site
and at its nearest-neighbor sites#, and second, the random
ness in the selection of one of the two neighbors of sitei in
case of a tie in their values ofKi . In order to make the
dynamics deterministic, we employ a parallel update sche
in which all the lattice sites,i 51, . . . ,L, are updated simul-
taneously instead of sequentially. The randomness assoc
with the selection of a neighbor in case of a tie is elimina
by choosing the right neighbor if the serial number of t
occurrence of a tie, measured from the beginning of
simulation, is even, and the left neighbor if the serial num
is odd. To study coarsening in this deterministic version
model II, we prepare an initial structure with two identic
mounds separated by distancex0. The slope of these mound
is chosen to be equal to the ‘‘selected’’ value found in sim
lations of the original model. We then study the time evo
tion of this structure according to the parallel dynamics d
fined above, monitoring how the distancex between the
peaks of the mounds changes with timet. Assuming power-
law coarsening with exponentn, the separationx at time t is
expected to have the form

x~ t !5~x0
1/n2Ct!n, ~17!

whereC is a constant. In Fig. 20, we have shown the tim
dependence ofx(t) for three different initial separations,x0
580,90, and 100, and fits of the data to the form of Eq.~17!,
yielding the result 1/n52.960.1. From these observation
we conclude that the coarsening exponent in the zero-n
limit of model II is the same (n51/3) as that found for the
two versions of the continuum model. The observation t
the coarsening exponent for the noisy version of model I
different from 1/3 then indicates that the effect of noise in t

hed
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
discrete model isqualitatively differentfrom that in the con-
tinuum models. We discuss below a possible explanation
this behavior.

The fact that noiseless versions of all three models exh
the same value of the coarsening exponent (n51/3) suggests
that the coarsening is driven by an effective attractive in
action between the peaks of neighboring mounds. The
served value ofn suggests@44# that this attractive interaction
is proportional to 1/x2 wherex is the separation between th
mound tips. This interaction would lead to the observed
sult,t(x)}x3, in the noiseless limit if the rate of change ofx
with t is assumed to be proportional to the attractive fo
~‘‘overdamped limit’’!. The presence of noise in the origin
growth model leads to a noise term in the equation of mot
of the variablex, but the nature of this noise term is not cle
Since the observed coarsening dynamics in the noisy m
II ( n.0.5) suggests a similarity with random walks, we pr
pose that the effective dynamics of the variablex is governed
by the kinetic equation

dx

dt
52C/x21h~ t !, ~18!

whereh is a Gaussian,d-correlated noise with zero mea
and variance equal to 2D. In this phenomenological descrip
tion, the coarsening of a two-mounded structure in mode
is mapped to a Brownian walk of a particle in an attract
potential field with an absorbing wall at the origin, such th
the particle cannot escape once it arrives at the origin. H
the quantity of interest is the typical first passage timet ~i.e.,
the time taken by a particle to reach the origin! as a function
of x0, the initial distance of the particle from the origin. I
the noiseless limit (D50), t is equal tox0

3/(3C), and in the
purely Brownian walk limit (C50), the typical value oft
should be of the order ofx0

2/D. Therefore, for sufficiently
large values ofx0, random-walk behavior characterized b
n51/2 is expected. However, for relatively small values
x0, the behavior should be dominated by the attractive in
action. Therefore, we expect that the dynamics described
Eq. ~18! with nonzeroC and D would exhibit a crossove
from a noise dominated regime to an interaction domina

FIG. 20. Peak separationx as a function of timet for a two-
mounded structure for model II with parallel updates~see text!. The
data shown are forl52.0, c50.005,L5500. The initial value of
the separation isx0580 ~squares!, x0590 ~diamonds!, and x0

5100 ~circles!. The solid lines represent the fits described in t
text.
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regime as the value ofx0 is decreased. This crossover
expected to occur nearx05xc;C/D, for which the values
of t obtained from the two individual terms in Eq.~18! be-
come comparable.

To test the validity of this reduced description, we ha
simulated the evolution of a two-mounded structure in
original model II. The initial growth of^x2(t)&2^x(t)&2

with time is found to be linear, indicating the presence o
random additive noise in the effective equation of motion
x. Figure 21 shows the time dependence of^x(t)& obtained
from simulations ofL5500 samples of model II withl
52.0, c50.005, andx05100. In this plot, 103 units of
simulation ‘‘time’’ ~number of deposited layers! is taken to
be the unit oft. The number of independent runs used in t
calculation of averages is 800. The observed dependenc
^x(t)& on t can be described reasonably well by the reduc
equation of Eq.~18! for appropriate choice of the values o
the parametersC and D. As shown in Fig. 21, thêx(t)&
calculated numerically from Eq.~18! with C5285.0 and
2D50.3 provides a good fit to the data obtained from sim
lations of the growth model. For such values ofC andD, and
x0'L whereL5103 is the sample size used in the calcul
tion of the coarsening exponent,Dx0 /C is of order unity,
indicating that the effects of the noise term in Eq.~18! should
be observed in the simulation data. We, therefore, concl
that the presence of an additive random noise term in
effective equation of motion for the separation between
peaks of neighboring mounds in model II is a plausible e
planation for the observed value of the coarsening expon
n51/2.

In view of this conclusion, it is interesting to enquire wh
the coarsening exponentn for models I and IA has the value
1/3 characteristic of dynamics governed by the determini
interaction between mound tips. We cannot provide a con
sive answer to this question. One possibility is that the ad
tive random noise in the original growth equations for the
models does not translate into a similar noise in the effec
equation of motion for the separation of mound tips. A se
ond possibility is that the equation of motion for the sepa
tion x for these models also has the form of Eq.~18!, but the
relative strength of the noise is much smaller, so that

FIG. 21. The solid line shows the average value of the sep
tion x(t) between mound tips~see text! as a function of timet for a
two-mounded structure for model II. The data shown are forl
52.0, c50.005, L5500, x05100, averaged over 800 runs. Th
dashed line showŝx(t)& calculated for the reduced model of Eq
~18! with C5285.0 andD50.15.
1-13
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B. CHAKRABARTI AND C. DASGUPTA PHYSICAL REVIEW E69, 011601 ~2004!
crossover valuexc is much larger than the typical samp
sizes used in our simulations. Under these circumstances
dynamics ofx would be governed by the interaction andt
would be proportional tox0

3, giving the value 1/3 for the
coarsening exponentn. If the second explanation is correc
then one should observe a crossover fromn51/3 to n51/2
in models I and IA as the sample sizeL is increased. We do
not find any evidence for such a crossover in our simulatio

While the purely empirical reduced model describ
above provides a plausible explanation of the obser
coarsening behavior in model II, it should be mentioned t
the assumption of the presence of an additive random n
in the effective equation of motion for the mound separat
x is in conflict with existing theories@45–47# of purely
noise-driven coarsening of mounds in one-dimensional c
served models in which the occurrence of mounds is du
an ES instability. In these studies, it is argued@45,46# that the
shot noise in the deposition process leads to fluctuation
orderA(t/x) in the variablex (t is the deposition time! if the
slope of the mounds remains constant in time. Assuming
two mounds coalesce when this fluctuation becomes of o
x, one then obtains the characteristic time for the coalesce
of mounds separated by distancex to scale asx3, leading to
n51/3. In this description, the effective Langevin equati
@47# for the dynamics ofx contains amultiplicative noise
term h(t)/Ax(t), where h(t) is a random, Gaussian
d-correlated noise. Our numerical result for the value ofn for
model II is clearly inconsistent with this description of th
effects of deposition noise. The reason for this disagreem
is not completely clear. An important difference betwe
model II and the ones studied in Refs.@45–47# is that model
II exhibits power-law coarsening~with a different valuen
51/3 of the coarsening exponent! in the deterministic limit,
whereas the ones considered in the earlier studies ex
very slow ~logarithmic! coarsening in the absence of nois
For this reason, the effects of deposition noise in these m
els could be studied without having to take into account a
deterministicmass flow between mounds that may also le
to coarsening@46#. Such deterministic effects are clear
present in model II, and the interplay of these effects w
those of the shot noise in the deposition process may cha
the characteristics of the noise that appears in the effec
Langevin equation for the mound separation variablex. A
detailed analysis of all the processes that may lead to co
ening in the deterministic and noisy versions of model
would be required for resolving this issue.

VI. MODEL I WITH CONSERVED NOISE

As discussed in Sec. IV, the properties of the mound
phase of model I are determined to a large extent by
mounded fixed point of the deterministic part of the equ
tions of motion of the height variables. The presence of no
changes the critical value of the control parameterc from c1
to c2,c1, but does not affect strongly the properties of t
mounded steady state of the system~see, for example, Fig
11!. Therefore, we expect that the properties of the moun
phase would not change drastically if the properties of
noise are altered. On the other hand, it is well known@1,2#
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that the exponents that describe the scaling behavior in
kinetically rough phase depend strongly on the nature of
noise. In particular, the exponents for conserved noise
expected to be quite different from those describing the
havior for nonconserved noise. The occurrence of the n
linear instability that leads to the mounded phase in our m
els is contingent upon the spontaneous formation of pillars
height h0.hmin(l,c), if the initial state of the system is
completely flat. The probability of formation of such pillar
depends crucially@33# on the values of the roughening ex
ponents which, in turn, are strongly dependent on the na
of the noise. Therefore, we expect that the nature of the n
may be very important in determining whether the instabil
leading to mound formation actually occurs in samples w
flat initial states.

We have investigated this issue in detail by carrying o
simulations of a version of model I in which the noise
conserved@35#. The equations of motion for the height var
ables in this model have the form of Eq.~8!, with the noise
terms$h i(t)% having the properties

^h i~ t !&50, ^h i~ t !h j~ t8!&52¹̃2d i , jd t,t8 , ~19!

whered i j 51 if i 5 j and zero otherwise. This model is ex
pected to exhibit kinetic roughening with exponentsb
.1/11, a.1/3, andz.11/3 in one dimension@35#. Since
the value ofa for this model is less than unity, it exhibit
conventional dynamical scaling with the typical value of t
nearest-neighbor height difference saturating at a cons
value at long times. The value of this constant is expecte
increase@33# as the strengthl of the nonlinearity is in-
creased. As discussed in detail in Ref.@33#, the nonlinear
instability that leads to mound formation is expected to oc
in the time evolution of such models from a perfectly fl
initial state only if the value ofl is sufficiently large to allow
the spontaneous, noise-induced formation of pillars of hei
greater thanhmin(l,c). So, if the value ofl is sufficiently
small, then the model with conserved noise, evolving from
flat initial state, would not exhibit the mounding transitio
On the other hand, if the instability is induced in the mod
by starting the time evolution from a state in which there
at least one pillar with height greater thanhmin , then it is
expected to evolve to the mounded state if the value ofc is
sufficiently small to make the mounded state stable. So,
long-time steady state of the conserved model is expecte
exhibit an interesting dependence on the initial state: ifl is
sufficiently small ~so that pillars with height greater tha
hmin are not spontaneously generated in the time evolution
the interface from a flat initial state!, and the value ofc
sufficiently small~so that the mounded state is stable in t
presence of noise!, then the steady state would be kinetica
rough if the initial state is sufficiently smooth, and mound
if the initial state contains pillars of height greater thanhmin .
This ‘‘bistability’’ does not occur for the nonconserve
model I because the nearest-neighbor height difference
this model continues to increase with time, so that the ins
bility always occurs at sufficiently long times@33#.

Our simulations of the model with conserved noise sh
the bistable behavior discussed above in a large region o
1-14
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MOUND FORMATION AND COARSENING FROM A . . . PHYSICAL REVIEW E69, 011601 ~2004!
c-l plane. We find that in this model, the height of a pillar
an otherwise flat interface increases in time if its initial val
h0 is larger thanhmin.20/l ~the dependence ofhmin on c is
weak!. This dependence ofhmin on l is very similar to that
@33# found for model I with nonconserved noise. We al
find that the typical values of the nearest-neighbor hei
difference do not continue to increase with time in th
model. Consequently, ifl is sufficiently small, pillars with
height greater thanhmin are not generated, and the syste
exhibits conventional kinetic roughening with exponent v
ues close to the expected ones@35#. On the other hand, if the
time evolution of the same system is started from a state w
a pillar of height greater thanhmin , then it evolves to a
mounded state very similar to the one found in the mo
with nonconserved noise if the value ofc is sufficiently
small. The two steady states obtained for the conser
model withl54.0, c50.01 are shown in Fig. 22. The long
time state obtained in a run starting from a flat configurat
is kinetically rough, whereas the state obtained in a run
which the nonlinear instability is initially seeded in the for
of a single pillar of heighth051000 at the central site i
mounded with a well-defined slope, as in model I with no
conserved noise. The difference between the two profi
obtained for the same parameter values for two different
tial states, is quite striking.

Since the steady state in the conserved model depend
the initial condition, it is not possible to draw a convention
phase diagram for this model in thec-l plane: the transition
lines are different for different initial conditions. In Fig. 23
we have shown three transition lines for this model in
c-l plane. The line drawn through the circles~line 1! is
obtained from simulations in which the system is star
from a flat initial state. Ifl is small, then the steady sta
reached in such runs is kinetically rough for all values ofc.
As l is increased above a ‘‘critical value’’lc.5.3, pillars
with height greater thanhmin are spontaneously generate
during the time evolution of the system and it exhibits
transition to the mounded state if the value ofc is not very
large. The circles represent the values ofc for which 50% of
the runs show transitions to the mounded state. The
through the diamonds~line 2! corresponds to 50% probabi
ity of transition to the mounded state from an initial sta
with a pillar of heighth05 1000 on an otherwise flat inter

FIG. 22. Profiles at timet5105 for model I with conserved
noise (l54.0, c50.02, L5500), for a flat initial configuration
~top panel!, and an initial configuration with a pillar of heighth0

51000 ~bottom panel!.
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face. The probability of reaching a mounded steady stat
such runs decreases from unity as the value ofc is increased,
and falls below 50% as line 2 is crossed from below. F
largel, lines 1 and 2 merge together. This is expected:
probability of occurrence of a mounded steady state sho
not depend on how the pillars that initiate the nonlinear
stability are generated. The third line~the one passing
through the squares! represents 50% probability of transitio
to the kinetically rough state from a mounded initial sta
~the fixed point of the noiseless equations of motion with o
mound and one trough!. This line reflects the noise-induce
instability of the mounded steady state for relatively lar
values ofc. The differences between lines 2 and 3 are due
finite-time hysteresis effects similar to those discussed
Sec. IV in the context of determining the critical valuec2(l)
of the control parameterc for model I with nonconserved
noise.

The interesting region in the ‘‘phase diagram’’ of Fig. 2
is the area enclosed by lines 1 and 2 and thec50 line. For
parameter values in this region, the system exhibits bista
behavior, as discussed above. This bistability is unexpe
in the sense that in most studies of nonequilibrium surf
growth, it is implicitly assumed that the long-time stea
state of the system does not depend on the choice of
initial state. So, it is important to examine whether the d
pendence of the steady state on the initial condition in
conserved model reflects a very long~but finite! transition
time from one of the two apparent steady states to the o
one. We have addressed this question by carrying out lont
of the order of 107) simulations of small samples with pa
rameter values in the middle of the ‘‘bistable region’’ for fl
and mounded initial states. We did not find any evidence
transitions from one steady state to the other one in s
simulations. Of course, we cannot rule out the possibility t
such transitions would occur over much longer time scal

VII. SUMMARY AND DISCUSSIONS

To summarize, we have shown from numerical simu
tions that a class of 1D surface growth models exhib
mound formation and power-law coarsening of mounds w

FIG. 23. Phase diagram for model I with conserved noise. T
plots show 50% stability lines~see text! for a flat initial state
~circles!, an initial state with a pillar of heighth051000 ~dia-
monds!, and an initial state identical to the mounded fixed point
the noiseless equations of motion~squares!. The data were obtained
from 100 t5104 runs forL5200 samples.
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slope selection as a result of a nonlinear instability tha
controlled by the introduction of an infinite series of term
with higher-order gradient nonlinearities. The models cons
ered here are discretized versions of a well-known c
tinuum growth equation and an atomistic model origina
formulated for providing a discrete realization of the grow
equation. We have shown that these models exhibit a
namical phase transition between a kinetically rough ph
and a mounded phase as a parameter that measures t
fectiveness of controlling the instability is varied. We ha
defined an order parameter for this first-order transition
used finite-size scaling to demonstrate how the sample-
dependence of this order parameter provides a clear dis
tion between the rough and mounded phases. We have
mapped out the phase boundary that separates the two p
in a two-dimensional parameter space.

We would like to emphasize that the ES mechanism, co
monly believed to be responsible for mound formation
surface growth, is not present in our models. Our mod
exhibit a nonlinear instability, instead of the linear instabil
used conventionally to represent the effects of ES-barri
The mechanism of mound formation in our models is a
different from a recently discovered@17,18# one involving
fast edge diffusion, which occurs in two or higher dime
sions. The slope selection found in our models is a rare
ample of pattern formation from a nonlinear instability. Th
is clearly different from slope selection in ES-type models
which the mounds maintain a constant slope during coar
ing only if the nonequilibrium surface current vanishes a
particular value of the slope. The selected slope in such m
els is simply the slope at which the current is zero. T
behavior of our models is more complex: in these mod
the surface current is zero for all values of constant slo
and the selected value of the slope is obtained from a n
linear mechanism of pattern selection.

Our studies bring out two other unexpected results.
find that the coarsening behavior of an atomistic mo
~model II! specifically designed to provide a discrete realiz
tion of the growth equation that leads to model I is differe
from that of model I: the exponents that describe the pow
law coarsening are different in the two models. We show t
this difference may arise from a difference in the nature
the effective noise that enters the equation of motion for
separation between neighboring mounds in the two ca
The second surprising result is that the numerically obtai
long-time behavior of model I with conserved noise in
region of parameter space depends crucially on the in
conditions: the system reaches a mounded or kinetic
rough steady state depending on whether or not the in
state is sufficiently rough. To our knowledge, this is the fi
example of ‘‘nonergodic’’ behavior in nonequilibrium su
face growth.

The behavior found in our 1D models may be relevant
experimental studies of the roughening of steps on a vic
surface. As noted earlier, the form of the control functi
f (x) used in model IA is physically reasonable. Howev
since very little is known about the values of the mod
parameters appropriate for experimentally studied syste
we are unable to determine whether the mechanism
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mound formation found in our study would be operative u
der experimentally realizable conditions. As discussed
Ref. @23#, the control parameterc in the control functionf (x)
of model IA is expected to be proportional tol c

2 wherel c is a
‘‘nucleation length’’ qualitatively defined@22# as the typical
width of a terrace just before another terrace is nucleate
the top of it. The occurrence of the nonlinear instability r
quires a small value of this length which, in the absence
the ES effect, is proportional to the 1/4 power of the diff
sion constant@22#. So, the small-c regime could, perhaps, b
achieved in experiments by decreasing the substrate temp
ture.

The nonlinear instability found in our 1D models is als
present @34# in the experimentally interesting two
dimensional version of the growth equation of Eq.~3!. How-
ever, it is not clear whether this instability, when controll
in a manner similar to that in our 1D models, would lead
the formation of mounds in two dimensions. This question
currently under investigation. Since the growth equation
Eq. ~3! exhibits conventional dynamic scaling in the kinet
roughening regime in two dimensions, the nonlinear insta
ity would not occur in runs with flat initial states if the valu
of l is small. Therefore, the behavior in two dimensions
expected to be similar to that of our 1D model I with co
served noise: the nature of the long-time steady state
depend crucially on initial conditions in a region of param
eter space. Such nonergodic behavior, if found in two dim
sions, would have interesting implications for the growth
films on patterned substrates.

Since the ES instability represents a physical effect tha
believed to be present in most experimental systems,
interesting to enquire about the mounding behavior of m
els in which both the nonlinear instability discussed here a
a linear instability representing the ES effect are simult
neously present. A preliminary numerical study@48# of such
a model suggests that the long-time behavior would be v
similar to that found in the present study~i.e., the mounding
behavior would be governed by the nonlinear instability! if
the control parameterc is sufficiently small. For relatively
large values ofc, the kinetically rough phase found in th
present work would be transformed by the linear instabi
to a different mounded phase. There are several ways
which this~large-c) mounded phase arising from the ES li
ear instability can be distinguished from the one in which
nonlinear instability is the dominant one. A quantity me
sured in most experiments is the interface width as a func
of time ~number of deposited layers!. If the nonlinear insta-
bility is dominant, then the interface widthW is expected to
exhibit an initial scaling regime~power-law growth with
time!, followed by a rapid increase that breaks dynamic sc
ing, and a subsequent long-time coarsening regime in wh
a power-law growth ofW is recovered. This behavior is il
lustrated in Figs. 1 and 2. The behavior in the large-c regime,
where the linear instability is the dominant one, is expec
@23# to be different: here the initial growth ofW would be
exponential in time, and the sudden increase ofW at the
onset of the nonlinear instability would be absent. Furth
the coarsening behavior would be very different in the t
regimes. The small-c regime dominated by the nonlinear in
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stability is expected to show slope selection and power-
coarsening similar to that found in the present work. In co
trast, the mounds in the large-c regime are expected t
steepen with time and the dependence of the mound siz
time may be quite complicated@23#.

All the results described in this paper have been obtai
from numerical studies of models that are discrete in b
space and time. It is interesting to enquire whether the tr
continuum growth equation of Eq.~3! exhibits similar behav-
ior. This question acquires special significance in view
studies@33,49# that have shown that discretization may dra
tically change the behavior of nonlinear growth equatio
similar to Eq.~3!. Since the interesting behavior found in o
discretized models arises from the nonlinear instability fou
earlier @32,33#, the question that we have to address
whether a similar instability is present in the truly continuu
growth equation. This question was addressed in some d
in Ref. @33# where it was shown that the nonlinear instabil
is not an artifact of discretization of time or the use of t
simple Euler scheme for integrating the growth equation
the present study, we have found additional evidence~see
Sec. III! that supports this claim. We should also point o
that the atomistic model II, for which the question of ina
curacies arising from time integration does not arise, exhi
very similar behavior, suggesting that the behavior found
models I and IA is not an artifact of the time discretizati
used in the numerical integration.

The occurrence of the nonlinear instability does depe
on the way space is discretized~i.e., how the lattice deriva-
tives are defined!. In earlier work@32,33# as well as in the
present study, the lattice derivatives are defined in a left-r
symmetric way. We have found that the instability actua
becomes stronger if the number of neighbors used in
definition of the lattice derivatives is increased. This res
suggests that the instability is also present in the continu
equation. It has been found by Putkaradzeet al. @50# that the
instability does not occur if the lattice derivatives are defin
in a different way in which either left or right discretizatio
of the nonlinear term is used, depending on the sign of
local slope of the interface. There is no reason to believe
this definition is ‘‘better’’ or ‘‘more physical’’ than the sym
metric definitions used in our work. The only rigorous res
we are aware of for the behavior of Eq.~3! is derived in Ref.
@50# where it is shown that the solutions of the noisele
equation are bounded for sufficiently smooth initial con
tions. This result, however, does not answer the questio
whether the instability occurs in the continuum equation.
discussed in Ref.@33#, the nonlinear instability of Eq.~4!,
signaled by a rapid initial growth of the height~depth! of
isolated pillars~grooves!, may not lead to a true divergenc
of the height variables. The results reported in the pres
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work would remain valid as long as high pillars or de
grooves are formed by the instability—the occurrence o
true divergence is not necessary.

In the present work, we have shown~see Sec. IV! that the
continuum equation withf (x) defined in Eq.~10! does admit
stationary solutions that exhibit all the relevant features
stationary solutions of the discretized equation. This res
provides additional support to the contention that the beh
iors of the continuum and discretized systems are qua
tively similar. We should, however, mention that these s
tionary solutions of the continuum equation do not pick ou
selected slope of the interface: profiles similar to tho
shown in Fig. 11 may be obtained for different values of t
parameterA in Eq. ~14! that determines the slope of th
triangular mound. Slope selection in the continuum equat
may occur as a consequence of the requirement of local
bility of such stationary solutions. As mentioned in Sec.
we have not attempted a linear stability analysis of such
merically obtained stationary solutions of the continuu
equation because doing such a calculation without discre
ing space would be extremely difficult. Further investigati
of this question would be useful.

Finally, we would like to emphasize that the discrete mo
els studied here would continue to be valid models for
scribing nonequilibrium surface growth even if the behav
of the truly continuum growth equation of Eq.~3! turns out
to be different from that found here. These models may
looked upon as ones in which continuous~in models I and
IA ! or discrete~in model II! height variables defined on
discrete lattice evolve in continuous or discrete time. Th
models have all the correct symmetries and conserva
laws of the physical problem, and they exhibit, for differe
values of the control parameterc, both the phenomena o
kinetic roughening and mound formation found in expe
ments. There is no compelling reason to consider the c
tinuum equation to be more ‘‘correct’’ or ‘‘physical’’ than
these models. Epitaxial growth is intrinsically a discrete p
cess at the molecular level and a continuum description is
approximation that may not be valid in some situations.

From a different perspective, the nonequilibrium firs
order phase transition found in our models is interesti
especially because it occurs in 1D systems with short-ra
interactions. Such phase transitions have been found ea
in several 1D ‘‘particle hopping’’ models@42#. It would be
interesting to explore possible connections between s
models and the 1D growth models studied here.
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